ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Multidisciplinary design optimization incorporating aircraft emission impacts
Received date: 2016-04-20
Revised date: 2016-06-27
Online published: 2016-08-15
Supported by
National Level Project
Continuous increase in air traffic has caused a rise in public awareness of environmental impact of aircrafts, imposing the demand to satisfy the emission requirements for future aircraft concept design and development. In this paper, the average temperature variation is calculated to measure the environmental performance of different aircraft designs. It is firstly used to analyze the effects of cruise altitude and speed variation on the magnitudes of climate impact due to different aircraft emissions, and is then integrated into an aircraft design optimization framework at the conceptual stage, so as to optimize the minimum emission impacts and operating costs. The design variables considered in the optimization problems include aircraft configurations, engine parameters and cruise settings. Additionally, the impact of emission cost on the tradeoffs between economic and environmental performance are reflected on the Pareto-optimal front.
LIU Nanxi , BAI Junqiang , HUA Jun , GUO Bin , WANG Xiaopeng . Multidisciplinary design optimization incorporating aircraft emission impacts[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 220340 -220340 . DOI: 10.7527/S1000-6893.2016.0203
[1] PENNER J E. Aviation and the global atmosphere:A special report of IPCC Working Groups I and Ⅲ in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer[M]. Cambridge:Cambridge University Press, 1999:18-20.
[2] FAN A. An assessment of environmental impacts of a NextGen implementation scenario and its implications on policy-making[D]. Cambridge:Massachusetts Institute of Technology, 2010:54-55.
[3] 闫国华, 吴鹏. 飞机完整航线二氧化碳排放量估算[J]. 装备制造技术, 2013(8):29-31. YAN G H, WU P. The aircraft the complete routes CO2 emissions estimate[J]. Equipment Manufacturing Technology, 2013(8):29-31(in Chinese).
[4] WUEBBLES D J, YANG H, HERMAN R. Climate metrics and aviation:Analysis of current understanding and uncertainties:Technical Report Theme 8[R]. Washington, D.C.:FAA Aviation Climate Change Research Initiative (ACCRI), 2008.
[5] HOUGHTON J T, JENKINS G J, EPHRAUMS J J. Climate change:The IPCC scientific assessment[M]. Cambridge:Cambridge University Press, 1990:364-366.
[6] SMITH S J, WIGLEY M L. Global warming potentials:1. Climatic implications of emissions reductions[J]. Climatic Change, 2000, 44(4):445-457.
[7] BERNTSEN T K, FUGLESTVEDT J S, JOSHI M M, et al. Response of climate to regional emissions of ozone precursors:Sensitivities and warming potentials[J]. Tellus Series B:Chemical & Physical Meteorology, 2005, 57B:283-304.
[8] SHINE K P, FUGLESTVEDT J S, HAILEMARIAM K, et al. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J]. Climatic Change, 2005, 68(3):281-302.
[9] LEE D S, FAHEY D W, FORSTER P M, et al. Aviation and global climate change in the 21st century[J]. Atmospheric Environment, 2009, 43(22-23):3520-3537.
[10] FUGLESTVEDT J S, SHINE K P, BERNTSEN T, et al. Transport impacts on atmosphere and climate:Metrics[J]. Atmospheric Environment, 2010, 44(37):4648-4677.
[11] LIM L, LEE D S, SAUSEN R, et al. Quantifying the effects of aviation on radiative forcing and temperature with a climate response model[C]//Proceedings of the TAC-Conference. Oxford:TAC, 2007:202-207.
[12] SAUSEN R, SCHUMANN U. Estimates of the climate response to aircraft CO2 and NOx emissions scenarios[J]. Climatic Change, 2000, 44(1-2):27-58.
[13] MARAIS K, LUKACHKO S P, JUN M, et al. Assessing the impact of aviation on climate[J]. Meteorologische Zeitschrift, 2008, 17(2):157-172.
[14] GREWE V, STENKE A. AirClim:An efficient tool for climate evaluation of aircraft technology[J]. Atmospheric Chemistry & Physics, 2008, 8(16):4621-4639.
[15] PONATER M, PECHTL S, SAUSEN R, et al. Potential of the cryoplane technology to reduce aircraft climate impact:A state-of-the-art assessment[J]. Atmospheric Environment, 2006, 40(36):6928-6944.
[16] ANTOINE N E, KROO I M. Framework for aircraft conceptual design and environmental performance studies[J]. AIAA Journal, 2005, 43(10):2100-2109.
[17] HENDERSON R P, MARTINS J R R A, PEREZ R E. Aircraft conceptual design for optimal environmental performance[J]. Aeronautical Journal, 2012, 116(1175):1-22.
[18] 王宇, 张帅. 面向客机概念设计的污染气体排放量估算方法[J]. 南京航空航天大学学报, 2013, 45(5):708-714. WANG Y, ZHANG S. Estimation method of pollutant gas emissions for civil jet conceptual design[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(5):708-714(in Chinese).
[19] WANG Y, YIN H, ZHANG S, et al. Multi-objective optimization of aircraft design for emission and cost reductions[J]. Chinese Journal of Aeronautics, 2014, 27(1):52-58.
[20] 王如华, 尹贵鲁, 何景武, 等. 快速CFD计算工具在民机概念优化设计中的应用[J]. 飞机设计, 2012(5):31-35. WANG R H, YIN G L, HE J W, et al. Fast CFD tool for civil aircraft conceptual design and optimization use[J]. Aircraft Design, 2012(5):31-35(in Chinese).
[21] 巨龙, 白俊强, 孙智伟, 等. 客机机翼环量分布的气动/结构一体化设计[J]. 航空学报, 2013, 34(12):2725-2732. JU L, BAI J Q, SUN Z W, et al. Integrated aero-structure design of circulation distribution for commercial aircraft wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2725-2732(in Chinese).
[22] BAUGHCUM S L, TRITZ T G, HENDERSON S C, et al. Scheduled civil aircraft emission inventories for 1992:Database development and analysis:NASA Contractor Report 4700[R]. Washington, D.C.:NASA, 1996.
[23] ISIKVEREN A T. Quasi-analytical modelling and optimisation techniques for transport aircraft design[D]. Stockholm:Royal Institute of Technology, 2002:105-108.
[24] DALLARA S E. Aircraft design for reduced climate impact[D]. Palo Alto, CA:Stanford University, 2011:1-20.
[25] MORRELL P, LU C. The environmental cost implication of hub-hub versus hub by-pass flight networks[J]. Transportation Research Part D:Transport & Environment, 2007, 12(3):143-157.
[26] JOOS F, PRENTICE I C, SITCH S, et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios[J]. Global Biogeochemical Cycles, 2001, 15(4):891-907.
[27] BOUCHER O, REDDY M S. Climate trade-off between black carbon and carbon dioxide emissions[J]. Energy Policy, 2008, 36(1):193-200.
[28] SAUSEN R, ISAKSEN I, GREWE V, et al. Aviation radiative forcing in 2000:An update on IPCC (1999)[J]. Meteorologische Zeitschrift, 2005, 14(4):555-561.
[29] STORDAL F, MYHRE G, STORDAL E J G, et al. Is there a trend in cirrus cloud cover due to aircraft traffic?[J]. Atmospheric Chemistry & Physics, 2005, 5(4):2155-2162.
[30] KOEHLER M O, RADEL G, DESSENS O, et al. Impact of perturbations to nitrogen oxide emissions from global aviation[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D11):3078-3078.
[31] RADEL G, SHINE K P. Radiative forcing by persistent contrails and its dependence on cruise altitudes[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D7):1829-1836.
[32] GREWE V, STENKE A, PONATER M, et al. Climate impact of supersonic air traffic:An approach to optimize a potential future supersonic fleet-Results from the EU-project SCENIC[J]. Atmospheric Chemistry and Physics, 2007, 7(19):5129-5145.
[33] 廖琳雪, 叶叶沛, 党铁红. 欧洲市场直接运营成本(DOC)分析方法及其应用[J]. 民用飞机设计与研究, 2013(1):1-4. LIAO L X, YE Y P, DANG T H. The method and application of the DOC analysis in European market[J]. Civil Aircraft Design and Research, 2013(1):1-4(in Chinese).
[34] FORSTER P, FRECKLETON R S, SHINE K P. On aspects of the concept of radiative forcing[J]. Climate Dynamics, 1997, 13(7-8):547-560.
[35] FICHTER C. Climate impact of air traffic emissions in dependency of the emission location and altitude[D]. Manchester:Manchester Metropolitan University, 2009:25-26.
[36] GIERENS K M, LING L, ELEFTHERATOS K, et al. A review of various strategies for contrail avoidance[J]. Open Atmospheric Science Journal, 2008, 2(1):1-7.
[37] JENSEN L, HANSMAN R J, VENUTI J, et al. Commercial airline speed optimization strategies for reduced cruise fuel consumption[C]//Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2013:4289-4302.
[38] CRAMER E J, DENNIS J J, FRANK P D, et al. Problem formulation for multidisciplinary optimization[J]. SIAM Journal on Optimization, 1994, 4(4):754-776.
[39] 王宇. 基于不确定性的优化方法及其在飞机设计中的应用[D]. 南京:南京航空航天大学, 2010:19-20. WANG Y. Uncertainty-based optimization method and its application in aircraft design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:19-20(in Chinese).
[40] 丁松滨. 飞行性能与飞行计划[M]. 北京:科学出版社, 2013:93-96. DING S B. Flight performance and flight plan[M]. Beijing:Science Press, 2013:93-96(in Chinese).
/
〈 | 〉 |