Fluid Mechanics and Flight Mechanics

A novel method for automatic transition prediction of flows over airfoils based on dynamic mode decomposition

  • HAN Zhonghua ,
  • WANG Shaonan ,
  • HAN Li ,
  • LIU Fangliang ,
  • XU Jianhua ,
  • SONG Wenping
Expand
  • National Key Laboratory of Science and Technology on Aerodynamic Design and Research, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-01-11

  Revised date: 2016-07-21

  Online published: 2016-08-08

Supported by

National Natural Science Foundation of China (11302177); Civil Aircraft Project (MJ-2015-F-016)

Abstract

Transition prediction is crucial for the simulation of steady and unsteady flows, since it can improve the accuracy of predicting the aerodynamic forces as well as capturing the flow phenomena. By combining dynamic mode decomposition (DMD) and eN method, a novel transition prediction method for flows over airfoils is proposed. Compared with conventional linear stability-analysis-based eN method, DMD requires neither the solution of boundary layer and linear stability equations, nor the assumption of parallel flows, and has better applicability in theory and is more algorithmically robust. Transition prediction of steady flows around NLF0416 and S809 airfoils and unsteady flow around SD7003 airfoil are carried out. The predicted transition locations are in reasonably good agreement with the experimental data and the results of eN method based on linear stability analysis. It is shown that the proposed DMD/eN method is feasible for transition prediction for steady and unsteady flows over airfoils, including the flows with laminar separation bubbles.

Cite this article

HAN Zhonghua , WANG Shaonan , HAN Li , LIU Fangliang , XU Jianhua , SONG Wenping . A novel method for automatic transition prediction of flows over airfoils based on dynamic mode decomposition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120034 -120034 . DOI: 10.7527/S1000-6893.2016.0225

References

[1] 符松, 王亮. 湍流转捩模式研究进展[J]. 力学进展, 2007, 37(3):409-416. FU S, WANG L. Progress in turbulence/transition modelling[J]. Advances in Mechanics, 2007, 37(3):409-416(in Chinese).
[2] 周恒. 关于转捩和湍流的研究[C]//2003空气动力学前沿研究论文集. 北京:中国空气动力学会, 2003:87-93. ZHOU H. Studies on transition and turbulence[C]//2003 Advanced Research Papers on Aerodynamics. Beijing:Aerodynamic Society of China, 2003:87-93(in Chinese).
[3] FASEL H F, MEITZ H L, BACHAN C R. DNS and LES for investigating transition and transition control:AIAA-1997-1820[R]. Reston:AIAA,1997.
[4] SCHLATTER S. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116-126.
[5] BRAZELL M J, KIRBY A, STOELLINGER M, et al. Using LES in a Discontinuous Galerkin method with constant and dynamic SGS models:AIAA-2015-0060[R]. Reston:AIAA, 2015.
[6] 陈奕, 高正红. Gamma-Theta转捩模型在绕翼型流动问题中的应用[J]. 空气动力学学报, 2009, 27(4):411-419. CHEN Y, GAO Z H. Application of Gamma-Theta transition model to flows around airfoils[J]. Acta Aerodynamic Sinica, 2009, 27(4):411-419(in Chinese).
[7] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[8] GRABE C, KRUMBEIN A. Extension of the γ-Reθt model for prediction of crossflow transition:AIAA-2014-1269[R]. Reston:AIAA, 2014.
[9] 符松, 王亮. 基于雷诺平均方法的高超音速边界层转捩模拟[J]. 中国科学:G辑, 2009, 39(4):617-626. FU S, WANG L. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach[J]. Science in China:Series G, 2009, 39(4):617-626(in Chinese).
[10] STOCK H W, HAASE W. Navier-Stokes airfoil computations with eN transition prediction including transitional flow regions[J]. Journal of Aircraft, 2000, 38(11):2059-2066.
[11] 张坤, 宋文萍. NS方程计算中耦合转捩自动判断的阻力精确计算方法初探[J]. 空气动力学学报, 2009, 27(4):400-404. ZHANG K, SONG W P. Accurate drag calculation by coupling automatic prediction of transition point to the Navier-Stokes method[J]. Acta Aerodynamic Sinica, 2009, 27(4):400-404(in Chinese).
[12] KRUMBEIN A, KRIMMELBEIN N, SEYFERT C. Automatic transition prediction in unsteady airfoil flows using an unstructured CFD code:AIAA-2011-3365[R]. Reston:AIAA, 2011.
[13] RADESPIEL R, WINDTE J, SCHOLZ U. Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles[J]. AIAA Journal, 2007, 45(6):1346-1356.
[14] WINDTE J, RADESPIEL R. Propulsive efficiency of a moving airfoil at transitional low Reynolds numbers[J]. AIAA Journal, 2008, 46(9):2165-2177.
[15] 刘方良. 低雷诺数翼型流动转捩判断与优化设计方法[D]. 西安:西北工业大学, 2014:33-67. LIU F L. Transition prediction and optimization design method for low-Reynolds-number airfoil[D]. Xi'an:Northwestern Polytechnical University, 2014:33-67(in Chinese).
[16] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 291(1):245-283.
[17] BERTOLOTTI F P, HERBERT T. Analysis of the linear stability of compressible boundary layers using the PSE[J].Theoretical and Computational Fluid Dynamics, 1991, 3(2):117-124.
[18] NOACK B R, MORZYNSKI M, TADMOR G. Reduced-order modelling for flow control[M]. Udine:CISM, 2011:77-110.
[19] CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Computational Science, 2000, 78(7):808-807.
[20] SIROVICH L. Turbulence and the dynamics of coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3):561-590.
[21] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1):539-575.
[22] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28.
[23] ROWLEY C, MEZIC I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641:115-127.
[24] SCHMID P J, LI L, JUNIPER M, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1-4):249-259.
[25] SCHMID P J. Application of the dynamic mode decomposition to experimental data[J]. Experiments in Fluids, 2011, 50(4):1123-1130.
[26] SOMERS D M. Design and experimental results for a natural-laminar-flow airfoil for general aviation applications:NASA-TP-1861[R]. Washington, D.C.:NASA, 1981.
[27] SOMERS D M. Design and experimental results for the S809 airfoil:NREL/SR-440-6918[R]. Colorado:NREL, 1997.
[28] 张坤. 基于NS方程的机翼边界层转捩判断及应用研究[D]. 西安:西北工业大学, 2011:97-157. ZHANG K. Automatic transition prediction and application to 3D swept wings[D]. Xi'an:Northwestern Polytechnical University, 2011:97-157(in Chinese).

Outlines

/