Material Engineering and Mechanical Manufacturing

Anomalous behavior detection method based on multidimensional trajectory characteristics

  • PAN Xinlong ,
  • WANG Haipeng ,
  • HE You ,
  • XIONG Wei ,
  • ZHOU Wei
Expand
  • Institute of Information Fusion, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2016-05-17

  Revised date: 2016-07-18

  Online published: 2016-07-19

Supported by

National Natural Science Foundation of China (61531020, 61471383, 91538201); Major Science and Technology Projects in Shandong Province (2015ZDZX01001)

Abstract

In the information fusion domain, anomalous behaviors could be mined based on multidimensional trajectory characteristics by using the anomalous detection technique in data mining. Previous trajectory anomaly detection algorithms mainly detect the position anomalies, without making full use of the attribute, category, position, velocity, and course characteristics. In order to overcome this limitation, we define the multi-factor Hausdorff distance, construct the multidimensional local outlier factor, and propose a method for detecting anomalous behaviors based on multidimensional trajectory characteristics. The method can mine anomalous behaviors based on detecting multidimensional trajectories. We conducted experiments on simulated military scenario and real civilian scenario, the proposed method can effectively detect the anomalous behavior of the target.

Cite this article

PAN Xinlong , WANG Haipeng , HE You , XIONG Wei , ZHOU Wei . Anomalous behavior detection method based on multidimensional trajectory characteristics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(4) : 320442 -320442 . DOI: 10.7527/S1000-6893.2016.0217

References

[1] 何友, 王国宏, 关欣, 等. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:1-15. HE Y, WANG G H, GUAN X, et al. Information fusion theory with applications[M]. Beijing:Publishing House of Electronics Industry, 2010:1-15 (in Chinese).
[2] CHEN M S, HAN J, YU P S. Data mining:An overview from a database perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1997, 8(6):866-883.
[3] HAN J, KAMBER M. Data mining:Concepts and techniques[M]. San Francisco:Morgan Kaufmann, 2001:1-18.
[4] ZHENG Y. Trajectory data mining:An overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3):1-41.
[5] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection:A survey[J]. ACM Computing Surveys, 2009, 41(3):1-58.
[6] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection for discrete sequences:A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(99):1-16.
[7] BARNETT V, LEWIS T. Outliers in statistical data[M]. New York:Wiley, 1994:24-26.
[8] KNORR E M, NG R T, TUCAKOV V. Distance-based outliers:Algorithms and applications[J]. International Journal on Very Large Data Bases, 2000, 8(3):237-253.
[9] JIN W, TUNG A K H, HAN J, et al. Ranking outliers using symmetric neighborhood relationship[J]. Lecture Notes in Computer Science, 2006, 3918:577-593.
[10] STRUYF A, ROUSSEEUW P J. High-dimensional computation of the deepest location[J]. Computational Statistics and Data Analysis, 2000, 34:415-426.
[11] SARAWAGI S, AGRAWAL R, MEGIDDO N. Discovery driven exploration of OLAP data cubes[M]. Berlin:Springer, 1998:67-69.
[12] KNORR E M, NG R T. Algorithms for mining distanced-based outliers in large datasets[C]//Proceedings of 24th International Conference on Very Large Data Bases. New York:Morgan Kaufmann, 1998:392-403.
[13] LI X, HAN J, KIM S. Motion-Alert:Automatic anomaly detection in massive moving objects[C]//IEEE International Conference on Intelligence and Security Informatics. Piscataway, NJ:IEEE Press, 2006:166-177.
[14] LI X, HAN J, KIM S, et al. ROAM:Rule-based and motif-based anomaly detection in massive moving object data sets[C]//Proceedings of 7th SIAM International Conference on Data Mining. Philadelphia:SIAM Press, 2007:273-284.
[15] LEE J G, HAN J, LI X. Trajectory outlier detection:A partition-and-detect framework[C]//Proceedings of 24th International Conference on Data Engineering. Washington, D.C.:IEEE Computer Society, 2008:140-149.
[16] 刘良旭, 乔少杰, 刘宾, 等. 基于R-Tree的高效异常轨迹检测算法[J]. 软件学报, 2009, 20(9):2426-2435. LIU L X, QIAO S J, LIU B, et al. Efficient trajectory outlier detection algorithm based on R-Tree[J]. Journal of Software, 2009, 20(9):2426-2435 (in Chinese).
[17] YANG A, TAN X, BAEK J, et al. A new ADS-B authentication framework based on efficient hierarchical identity-based signature with batch verification[J]. IEEE Transactions on Services Computing, 1939, PP(99):1.
[18] 沈笑云, 唐鹏, 张思远, 等. ADS-B统计数据的位置导航不确定类别质量分析[J]. 航空学报, 2015, 36(9):3128-3136. SHEN X Y, TANG P, ZHANG S Y, et al. Quality analysis of navigation uncertain category for position based on ADS-B statistical data[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3128-3136 (in Chinese).
[19] HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W A. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863.
[20] GAO Y, LEUNG M K H. Line segment Hausdorff distance on face matching[J]. Pattern Recognition, 2002, 35(2):361-371.
[21] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:Identifying density-based local outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data, 2000, 29(2):93-104.
[22] JANSSENS J, POSTMA E. One-class classification with LOF and LOCI:An empirical comparison[C]//Proceedings of the 18th Belgian-Dutch Conference on Machine Learning, 2009:1021-1040.
[23] PICIARELLI C, MICHELONI C, FORESTI G. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11):1544-1554.
[24] LAXHAMMAR R, FALKMAN G. Online learning and sequential anomaly detection in trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6):1158-1173.

Outlines

/