Electronics and Control

Deployment research of tethered InSAR system for GMTI missions

  • ZHANG Jinxiu ,
  • ZHANG Zhigang
Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2016-01-11

  Revised date: 2016-04-11

  Online published: 2016-06-27

Supported by

National Natural Science Foundation of China (91438202)

Abstract

The deployment of tethered interferometric synthetic aperture radar (InSAR) system applied for ground moving target indication (GMTI) missions is researched in the paper. To ascertain the characteristic of deployment, the three-dimensional dynamics model is applied, and the steady state analysis is presented. According to the system feature, the free deployment method is chosen to avoid halt caused by the output error of control mechanism. As a result, the deployment is sensitive to the initial state of system. Hence, particle swarm algorithm is used to optimize the initial state to deploy the system along horizontal direction when the deployment fulfills. Then a passive damper and jets control are used to make the system stay near horizontal direction in long-term. Finally, the numerical simulation is executed to verify the optimized initial state and the steady control method. The results show that the system could deploy to the target position with the optimized initial state, and the along-track baseline of system is always bigger than 99.6 m with the stable control.

Cite this article

ZHANG Jinxiu , ZHANG Zhigang . Deployment research of tethered InSAR system for GMTI missions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 3083 -3091 . DOI: 10.7527/S1000-6893.2016.0186

References

[1] OUCHI K. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sensing, 2013, 5(2):716-727.
[2] MOREIRA A, IRAOLA P P, YOUNIS M, et al. A tutorial on synthetic aperture[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1):6-43.
[3] KAHLE R, RUNGE H, ARDAENS J S, et al. Formation flying for along-track interferometric oceanography-First in-flight demonstration with TanDEM-X[J]. Acta Astronautica, 2014, 99:130-142.
[4] MOCCIA A, RUFINO G. Spaceborne along-track SAR interferometry:Performance analysis and mission scenarios[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1):199-213.
[5] 梁甸农, 蔡斌, 王敏, 等. 星载SAR-GMTI研究进展[J]. 国防科技大学学报, 2009, 31(4):87-92. LIANG D N, CAI B, WANG M, et al. Research process of spaceborne SAR-GMTI systems[J]. Journal of National Univeristy of Defense Technology, 2009, 31(4):87-92(in Chinese).
[6] MASSONNET D. Capabilities and limitations of the interferometric Cartwheel[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):506-520.
[7] MOCCIA A, VETRELLA S. A tethered interferometric synthetic aperture radar (SAR) for a topographic mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1):103-109.
[8] BOMBARDELLI C, LORENZINI E C, QUADRELLI M B. Retargeting dynamics of a linear tethered interferometer[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1061-1067.
[9] 钟睿, 徐世杰. 基于直接配点法的绳系卫星系统变轨控制[J]. 航空学报, 2010, 31(3):572-578. ZHONG R, XU S J. Orbit-transfer control for TSS using direct collocation method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):572-578(in Chinese).
[10] 刘刚, 李传江, 马广富. 应用非线性模型预测控制的绳系卫星Halo轨道保持控制[J]. 航空学报, 2014, 35(9):2605-2614. LIU G, LI C J, MA G F. Station-keeping of tethered satellite system around a halo orbit using nonlinear model predictive control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2605-2614(in Chinese).
[11] WILLIAMS P, HYSLOP A, STELZER M, et al. YES2 optimal trajectories in presence of eccentricity and aerodynamic drag[J]. Acta Astronautica, 2009, 64(7):745-769.
[12] ZHONG R, ZHU Z H. Optimal control of nanosatellite fast deorbit using electrodynamic tether[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1182-1194.
[13] YU S H. Range-rate control algorithms and space rendezvous schemes[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):206-208.
[14] GLABEL H, ZIMMERMANN F, BRUCKNER S, et al. Adaptive neural control of the deployment procedure for tether-assisted re-entry[J]. Aerospace Science and Technology, 2004, 8(1):73-81.
[15] WILLIAMS P. Optimal deployment/retrieval of tethered satellites[J]. Journal of Spacecraft and Rockets, 2008, 45(2):324-343.
[16] SUN G H, ZHU Z H. Fractional order tension control for stable and fast tethered satellite retrieval[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):2062-2066.
[17] ASLANOV V S, LEDKOV A S. Dynamics of tethered satellite systems[M]. Oxford:Woodhead Publishing, 2012:65-88.
[18] 徐鹤鸣. 多目标粒子群优化算法的研究[D]. 上海:上海交通大学, 2013:4-12. XU H M. Research on multi-objective particle swarm optimization algorithms[D]. Shanghai:Shanghai Jiao Tong University, 2013:4-12(in Chinese).
[19] 沈伋, 韩丽川, 沈益斌. 基于粒子群算法的飞机总体参数优化[J]. 航空学报, 2008, 29(6):1538-1541. SHEN J, HAN L C, SHEN Y B. Optimization of airplane primary parameters based on particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1538-1541(in Chinese).
[20] LEE N N, ZORN A H, WEST M. Passive vertical stabilization of two tethered nanosatellites with engineered damping[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA, 2008:1-16.
[21] LORENZINI E C. A three-mass tethered system for micro-g/variable-g applications[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(3):242-249.

Outlines

/