Electronics and Control

Extended unitary matrix pencil algorithm for optimal design of sparse reconfigurable antenna arrays

  • SHEN Haiou ,
  • WANG Buhong
Expand
  • Information and Navigation College, Air Force Engineering University, Xian 710077, China

Received date: 2015-12-21

  Revised date: 2016-06-14

  Online published: 2016-06-20

Abstract

An innovative method, extended unitary matrix pencil (EUMP) algorithm, is proposed for the optimal design of sparse reconfigurable antenna arrays. The joint sparse optimization model is established with element positions and excitations as the design variables, and an extended block-Hankel matrix can be constructed according to sample data of the desired pattern. Then through centro-Hermitian matrix and unitary transformation, this complex-valued sample matrix can be transformed into real-valued one, of which smaller singular values are discarded to reduce the number of antenna elements. The generalized eigenvalues of equivalent matrix pencil are exploited to estimate the sparse array element positions and their corresponding excitations accurately. Simulation results validate that multiple-patterns can be reconfigured with non-uniform arrangements by this algorithm efficiently.

Cite this article

SHEN Haiou , WANG Buhong . Extended unitary matrix pencil algorithm for optimal design of sparse reconfigurable antenna arrays[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3811 -3820 . DOI: 10.7527/S1000-6893.2016.0191

References

[1] LAGER I E, TRAMPUZ C, SIMEONI M, et al. Application of the shared aperture antenna concept to radar front-ends:advantages and limitations[C]//20104th European Conference on Antennas and Propagation (EuCAP), 2010:1-4.
[2] 赵菲, 齐会颖, 邱磊, 等. 自适应动态Meta粒子群优化算法综合多方向图共形阵列[J]. 电子与信息学报, 2012, 34(6):1476-1482. ZHAO F, QI H Y, QIU L, et al. Adaptive dynamic meta particle swarm optimization algorithm synthesizing multiple-pattern conformal array[J]. Journal of Electronics & Information Technology, 2012, 34(6):1476-1482(in Chinese).
[3] HAUPT R L, LANAGAN M. Reconfigurable antennas[J]. IEEE Antennas and Propagation Magazine, 2013, 55(1):49-61.
[4] KANG W, KIM K. A radiation pattern-reconfigurable antenna for wireless communications[C]//2011 IEEE International Symposium on Antennas and Propagation. Piscataway, NJ:IEEE Press, 2011:1545-1548.
[5] MORABITO A F, MASSA A, ROCCA P, et al. An effective approach to the synthesis of phase-only reconfigurable linear arrays[J]. IEEE Transactions on Antenna and Propagation, 2012, 60(8):3622-3631.
[6] VESCOVO R. Reconfigurability and beam scanning with phase-only control for antenna arrays[J]. IEEE Transactions on Antenna and Propagation, 2008, 56(6):1555-1565.
[7] MAHANTI G K, CHAKRABORY A, DAS S. Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio[J]. Journal of Electromagnetic Waves and Applications, 2007, 21(1):97-106.
[8] DING X, WANG B Z. A millimeter-wave pattern-reconfigurable antenna with a reconfigurable feeding network[J]. Journal of Electromagnetic Waves and Applications, 2013, 27(5):649-658.
[9] SUBHASHINI K R, KUMAR K P, LALITHA G, et al. Reconfigurable array antennas with side lobe level control by genetic modulation[C]//2011 IEEE Students' Technology Symposium (TechSym). Piscataway, NJ:IEEE Press, 2011:123-127.
[10] MANICA L, ROCCA P, MARTINI A, et al. An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations[J]. IEEE Transactions on Antenna and Propagation, 2008, 56(1):58-66.
[11] ZHAO X W, YANG Q S, ZHANG Y H. Compressed sensing approach for pattern synthesis of maximally sparse non-uniform linear array[J]. IET Microwaves, Antennas & Propagation, 2014, 8(5):301-307.
[12] OLIVERI G, MASSA A. Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays[J]. IEEE Transactions on Antenna and Propagation, 2011, 59(2):467-481.
[13] LIU Y H, NIE Z P, LIU Q H. Reducing the number of elements in a linear antenna array by the matrix pencil method[J]. IEEE Transactions on Antenna and Propagation, 2008, 56(9):2955-2962.
[14] LIU Y, LIU Q H, NIE Z P. Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method[J]. IEEE Transactions on Antenna and Propagation, 2010, 58(2):604-608.
[15] LIU Y H, LIU Q H, NIE Z P. Reducing the number of elements in multiple-pattern linear arrays by the extended matrix pencil methods[J]. IEEE Transactions on Antenna and Propagation, 2014, 62(2):652-660.
[16] SARKAR T K, PARK S, KOH J, et al. Application of the matrix pencil method to estimating the SEM (singularity expansion method) poles of source-free transient responses from multiple look directions[J]. IEEE Transactions on Antenna and Propagation, 2000, 48(4):48-55.
[17] LI J F, ZHANG X F. Unitary subspace-based method for angle estimation in bistatic MIMO radar[J]. Circuits, Systems, and Signal Processing, 2014, 33(2):501-513.
[18] QIAN C, HUANG L. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2):140-144.
[19] LEE A. Centrohermitian and skew-centrohermitian matrices[J]. Linear Algebra and Its Application, 1980, 29:205-210.
[20] HUANG K C, YEH C C. Unitary transformation method for angle of arrival estimation[J]. IEEE Transactions on Signal Processing, 1991, 39(4):975-977.
[21] 张贤达. 矩阵分析与应用[M]. 2版. 北京:清华大学出版社, 2013:11. ZHANG X D. Matrix analysis and applications[M]. 2nd ed. Beijing:Tsinghua University Press, 2013:11(in Chinese).
[22] AKDAGLI A, GUNEY K. Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm[J]. Microwave and Optical Technology Letters, 2003, 36(1):16-20.

Outlines

/