ACTA AERONAUTICAET ASTRONAUTICA SINICA >
High-order numerical simulation of CRM wing-body model
Received date: 2016-04-07
Revised date: 2016-06-06
Online published: 2016-06-15
Supported by
National Key Research and Development Program (2016YFB0200700)
High-order numerical simulation on CRM wing-body model is presented with the fifth-order WCNS scheme to assess the ability of high-order WCNS scheme on complex configuration simulation and the precision in predicating cruise drag of transonic configuration. Four grids (coarse, medium, fine, and extra fine) are created with software ICEM according to the gridding guidelines provided by DPW organizing committee, and the grid sizes range from 2 578 687 cells for the "Coarse" level to 65 464 511 cells for the "Extra-fine" level. Computation and analysis on four grids are carried out to investigate the grid effect on aerodynamic characteristics, pressure distribution and the local separation bubble at the wing root trailing edge, and the "Medium" grid is used in the numerical simulation and study of buffet onset. Compared to second-order numerical results, the statistic results submitted by DPW V participants and some experimental data, the high-order numerical results show that the drag coefficient computational results agree well with statistic data from DPW V participants; the grid density has some influence on the location of the shock wave and the size of the local separation bubble at the wing root trailing edge; the enlargement of the size of the separation zone due to shock wave and the local separation bubble at the wing root trailing edge on the upper surface of the wing is the main reason of the lift lift curve break at 4° angle of attack.
WANG Yuntao , SUN Yan , MENG Dehong , WANG Guangxue . High-order numerical simulation of CRM wing-body model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 120298 -120298 . DOI: 10.7527/S1000-6893.2016.0185
[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the first AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston:AIAA, 2008.
[7] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[8] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[9] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[10] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[11] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[12] 王运涛, 孟德虹, 孙岩, 等. DLR-F6/FX2B翼身组合体构型高阶精度数值模拟[J]. 航空学报, 2016, 37(2):484-490. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of DLR-F6/FX2B wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):484-490(in Chinese).
[13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[14] CHEN R F, WANG Z J. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[15] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU-SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[16] VAN LEER B. Towards the ultimate conservation difference scheme II, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370.
[17] RIVERS M B, DITTBERNER A. Experimental investigation of the NASA common research model (invited):AIAA-2010-4218[R]. Reston:AIAA, 2010.
[18] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston:AIAA, 2012.
[19] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston:AIAA, 2012.
[20] SCLAFANI A J, VASSBERG J C, WINKLER C, et al. DPW-5 analysis of the CRM in a wing-body configuration using structured and unstructured meshes:AIAA-2013-0048[R]. Reston:AIAA, 2013.
/
〈 | 〉 |