Electronics and Electrical Engineering and Control

Robust nonsingular Terminal sliding mode backstepping control for air-breathing hypersonic vehicles

  • WANG Xiao ,
  • GUO Jie ,
  • TANG Shengjing ,
  • XU Qian ,
  • MA Yueyue ,
  • ZHANG Yao
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China;
    3. Beijing System Design Institute of Electro-Mechanic Engineering, Beijing 100854, China

Received date: 2016-04-05

  Revised date: 2016-06-06

  Online published: 2016-06-12

Supported by

National Natural Science Foundation of China (11202024); Aeronautical Science Foundation of China (2012ZA720002)

Abstract

A new nonlinear disturbance observer based Terminal sliding mode backstepping controller is proposed for flexible air-breathing hypersonic vehicles with parameter perturbations and external disturbances. The longitudinal vehicle model considering the elastic mode is expressed as strict feedback form. On the basis of traditional backstepping method, the nonsingular fast Terminal sliding mode is introduced to control the pitch angle and pitch rate, thus optimizing the control structure and enabling the system with finite time convergence property. A new nonlinear disturbance observer developed from tracking differentiator is then introduced to estimate and compensate the uncertainties including the derivatives of virtual control laws to improve the robustness of the controller, which avoids the explosion of differentiation terms. The system tracking error is proven to converge to zero in finite time with Lyapunov stability theory. Simulations demonstrate the effectiveness of tracking input commands with the designed controller in the presence of uncertainties.

Cite this article

WANG Xiao , GUO Jie , TANG Shengjing , XU Qian , MA Yueyue , ZHANG Yao . Robust nonsingular Terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 320287 -320287 . DOI: 10.7527/S1000-6893.2016.0182

References

[1] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program:AIAA-2008-2540[R]. Reston:AIAA, 2008.
[2] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901-1913. SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese).
[3] 方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7):1776-1786. FANG Y W, CHAI D, MAO D H, et al. Status and development trend of the guidance and control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinca, 2014, 35(7):1776-1786(in Chinese).
[4] FIORENTINI L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Columbus:The Ohio State University, 2010:79-81.
[5] FIORENTINI L, SERRANI A,BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):402-417.
[6] SUN C, HUANG Y, QIAN C, et al. On modeling and control of a flexible air-breathing hypersonic vehicle based on LPV method[J]. Frontiers of Electrical and Electronic Engineering, 2012, 7(1):56-68.
[7] ZONG Q, WANG J, TIAN B, et al. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle[J]. Aerospace Science and Technology, 2013, 27(1):127-137.
[8] 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5):805-810. GAO D X, SUN Z Q, LUO X, et al. Fuzzy adaptive control for hypersonic vehicle via Backstepping method[J]. Control Theory & Applications, 2008, 25(5):805-810(in Chinese).
[9] BU X W, WU X Y, MA Z, et al. Nonsingular direct neural control of air-breathing hypersonic vehicle via backstepping[J]. Neurocomputing, 2015, 153(1):164-173.
[10] QI R Y, HUANG Y, JIANG B, et al. Adaptive backstepping control for hypersonic vehicle with uncertain parameters and actuator faults[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2012, 227(1):51-61.
[11] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899.
[12] ZONG Q, WANG F, TIAN B, et al. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78(1):289-315.
[13] FARRELL J A, POLYCARPOU M, SHARMA M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1391-1395.
[14] 路遥, 董朝阳, 王青. 高超声速飞行器自适应反步控制器设计[J]. 航空学报, 2015, 36(3):970-978. LU Y, DONG C Y, WANG Q. Adaptive backstepping controller design for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):970-978(in Chinese).
[15] 马悦悦, 唐胜景, 郭杰. 基于ESO的复合滑模面非奇异Terminal滑模控制[J]. 控制与决策, 2015, 30(1):76-80. MA Y Y, TANG S J, GUO J. Nonsingular terminal sliding mode control with compound sliding surface based on ESO[J]. Control and Decision, 2015, 30(1):76-80(in Chinese).
[16] YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16):1865-1879.
[17] 熊少锋, 王卫红, 王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用, 2014, 31(3):269-279. XIONG S F, WANG W H, WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory & Applications, 2014, 31(3):269-279(in Chinese).
[18] CHEN W H. Nonlinear disturbance observer enhanced dynamic inversion control of missiles[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):161-166.
[19] SUN H B, LI S H, YANG J, et al. Nonlinear disturbance observer-based backstepping control for airbreathing hypersonic vehicles with mismatched disturbances[J]. IET Control Theory and Applications, 2014, 8(17):1852-1865.
[20] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1):19-23. HAN J Q. Auto-disturbances-rejection controller and it's applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese).
[21] GUO B Z, ZHAO Z L. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60(6):420-430.
[22] RAN M P, WANG Q, DONG C Y. Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control[J]. Automatica, 2016, 63:302-310.
[23] YU S, YU X, SHIRINZADEH B, et al. Continuous finite time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11):1957-1964.
[24] POLYAKOV A, FRIDMAN L. Stability notions and Lyapunov functions for sliding mode control systems[J]. Journal of the Franklin Institute, 2014, 351(4):1831-1865.
[25] 周涛. 基于反双曲正弦函数的跟踪微分器[J]. 控制与决策, 2014, 29(6):1239-1242. ZHOU T. Tracking differentiator based on inverse hyperbolic sine function[J]. Control and Decision, 2014, 29(6):1239-1242(in Chinese).
[26] BU X Y, WU X Y, CHEN Y, et al. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems[J]. International Journal of Control, Automation and Systems, 2015, 13(3):595-602.

Outlines

/