Fluid Mechanics and Flight Mechanics

Design and realization of automated testing cloud platform for CFD verification and validation

  • CHEN Shusheng ,
  • LIU Liyuan ,
  • YAN Chao ,
  • LIN Boxi
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2016-03-10

  Revised date: 2016-05-23

  Online published: 2016-06-12

Abstract

Based on the idea of cloud computing,this paper proposes an automated testing cloud platform solution for large-scale computational fluid dynamics (CFD) software verification and validation. The main objective is to reduce labor costs, improve software quality and development efficiency, and be adapted to high performance computing for future development as well. This platform uses modularized browser/server (B/S) network architecture and LAMP (Linux+Apache+MySQL+PHP/Python) development tools. A continuous integration professional database is established, and a cloud environment is built, covering reliable cluster computing, complicated operation scheduling and massively parallel computing. This solution is able to automatically load test cases, submit cluster computing, monitor real-time process, post-process automatically and export analysis results containing comparisons with detailed experimental data, error analysis and summary reports. This platform has been applied to a large-scale parallel computing CFD software, and the feasibility and practicability of this solution have been verified.

Cite this article

CHEN Shusheng , LIU Liyuan , YAN Chao , LIN Boxi . Design and realization of automated testing cloud platform for CFD verification and validation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 120209 -120209 . DOI: 10.7527/S1000-6893.2016.0173

References

[1] KOGGE P, BERGMAN K, BORKAR S, et al. Exascale computing study:Technology challenges in achieving exascale systems:FA8650-07-C-7724[R]. OH:AFRL, Wright-Patterson Air Force Base, 2008.
[2] AMARASINGHE S, CAMPBELL D, CARLSON W, et al. Exascale software study:Software challenges in extreme scale systems:FA8650-07-C-7724[R]. OH:AFRL, Wright-Patterson Air Force Base, 2009.
[3] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[4] HAGER G, WELLEIN G. Introduction to high performance computing for scientists and engineers[J]. International Journal of Modern Physics A, 2011, 28(2):163-172.
[5] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[6] OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3):209-272.
[7] GOODENOUGH J B, MCGOWAN C L. Software quality assurance:Testing and validation[J]. Proceedings of the IEEE, 1980, 68(9):1093-1098.
[8] OBARA C J, LAMAR J E. Overview of the cranked-arrow wing aerodynamics project international[J]. Journal of Aircraft, 2009, 46(2):355-368.
[9] MARINI M, PAOLI R, GRASSO F, et al. Verification and validation in computational fluid dynamics:The FLOWNET database experience[J]. Bulletin of the JSME, 2002, 45(1):15-22.
[10] CASEY M, WINTERGERSTE T, INNOTEC S. ERCOFTAC special interest group on quality and trust in industrial CFD:Best practice guidelines[R]. Brussels:European Reasearch Community on Flow, Turbulence and Combusion, 2000.
[11] VIDANOVIC N, RASUO B, DAMLJANOVIC D, et al. Validation of the CFD code used for determination of aerodynamic characteristics of nonstandard AGARD-B calibration model[J]. Thermal Science, 2014, 18(4):104-104.
[12] MARVIN J G. A CFD validation roadmap for hypersonic flows:NASA-TM-103935[R]. Washington, D.C.:NASA, 1992.
[13] OBERKAMPF W L, BLOTTNER F G. Issues in computational fluid dynamics code verification and validation[J]. AIAA Journal, 1997, 36(5):687-695.
[14] AIAA. Guide for the verification and validation of computational fluid dynamics simulations:AIAA Guide G-077-1998[S]. Reston:AIAA, 1998.
[15] NPARC. NPARC alliance CFD verification & validation[DB/OL].[2016-02-05]. http://www.grc.nasa.gov/www/wind/valid.
[16] BAI W, LI L. CFD V&V and open benchmark database[J]. Chinese Journal of Aeronautics, 2006, 19(2):160-167.
[17] 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证和确认[J]. 力学进展, 2007, 37(2):279-288. DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288(in Chinese).
[18] 梁益友, 杨永, 朱朝, 等. CFD可信度分析平台WiseCFD[C]//第十二届全国计算流体力学会议论文集. 西安:中国航空工业第六三一研究所, 2004:775-780. LIANG Y Y, YANG Y, ZHU C, et al. Analyze platform of CFD reliability-WiseCFD[C]//12th National Computational Fluid Dynamics Conference. Xi'an:Chinese Aeronautics Computation Technique Research Institute, AVIC, 2004:775-780(in Chinese).
[19] 孙久振. 基于OSGi的CFD可信度分析平台的设计与实现[D]. 西安:西安电子科技大学, 2012:20-28. SUN J Z. The design and application of CFD credibility analysis platform based on OSGi[D]. Xi'an:Xidian University, 2012:20-28(in Chinese).
[20] MELL P M, GRANCE T. The NIST definition of cloud computing[S]. Gaithersbutg, MD:National Insitute of Standard and Technology, 2011.
[21] LEE J, WARE B. Open source development with LAMP:Using Linux, Apache, MySQL and PHP[M]. Boston:Addison-Wesley Professional, 2002:1-9.
[22] MARK L. Python学习手册[M]. 3版. 侯靖, 译. 北京:机械工业出版社, 2009:20. MARK L. Learning Python[M]. 3rd ed. HOU J, translated. Beijing:China Machine Press, 2009:20(in Chinese).
[23] SETTLES G S, FITZPARTRICK T J, BOGDONOFF S M. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6):579-585.

Outlines

/