Review

Problems in numerical prediction of dynamic stability derivatives

  • YUAN Xianxu ,
  • CHEN Qi ,
  • XIE Yufei ,
  • CHEN Jianqiang
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2016-04-21

  Revised date: 2016-06-04

  Online published: 2016-06-09

Supported by

National Natural Science Foundation of China (11172315, 11372341, 11532016)

Abstract

Dynamic stability derivative is one of the important parameters in the design of control system, the design of flight orbit, and the analysis of dynamic stability of vehicles. The prediction methods of the dynamic stability derivatives mainly include the engineering approximations, numerical simulations and wind tunnel tests. The concepts of dynamic stability derivative and cross derivative are reviewed, and the forced oscillation and free oscillation methods for numerically predicting the dynamic stability derivatives are introduced. The problems existing in the numerical prediction are specially discussed, including the choice of time-marching step and step number of sub-iteration, the effects of the oscillating frequency on the identification results, the analysis of the probable reasons which lead to the difference between the forced oscillation and free oscillation methods in dynamic derivative identification, the identification of the cross and cross coupling derivatives, and the identification of dynamic stability derivatives of the integrated internal-external flow vehicles. The discussions are made with computational cases and detailed analysis, in which both experiences and puzzles exist, and the corresponding suggestions for improvement are presented.

Cite this article

YUAN Xianxu , CHEN Qi , XIE Yufei , CHEN Jianqiang . Problems in numerical prediction of dynamic stability derivatives[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(8) : 2385 -2394 . DOI: 10.7527/S1000-6893.2016.0180

References

[1] 刘绪. 高超声速内外流一体化飞行器动态特性研究[D]. 长沙:国防科学技术大学, 2011:1-3. LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha:National University of Defense Technology, 2011:1-3(in Chinese).
[2] WEINACHT P. Navier-Stokes predictions of pitch damping for a family of flared projectiles:AIAA-1991-3339[R]. Reston:AIAA, 1991.
[3] QIN N, LUDLOW D K, SHAW S T, et al. Calculation of pitch damping coefficients for projectiles:AIAA-1997-0405[R]. Reston:AIAA, 1997.
[4] 刘伟, 张鲁民. 钝体俯仰阻尼导数数值计算[J]. 空气动力学学报, 1997, 15(4):427-435. LIU W, ZHANG L M. Numerical calculation of damping in pitch derivatives of blunt cone[J]. Acta Aerodynamics Sinica, 1997, 15(4):427-435(in Chinese).
[5] 刘伟, 牟斌. 高超声速滚转阻尼导数数值模拟[J]. 飞行力学, 2000, 18(2):27-29. LIU W, MOU B. Numerical simulation of damping-in-roll derivatives of blunt cone for hypersonic flow[J]. Flight Dynamics, 2000, 18(2):27-29(in Chinese).
[6] 刘伟, 刘君, 柳军. 平衡气体效应对飞行器动态特性的影响研究[J]. 飞行力学, 2004, 22(4):65-68. LIU W, LIU J, LIU J. Investigation of equilibrium gas effect on dynamic characteristic of aerocraft[J]. Flight Dynamics, 2004, 22(4):65-68(in Chinese).
[7] 袁先旭, 张涵信, 谢昱飞. 基于CFD方法的俯仰静、动导数数值计算[J]. 空气动力学学报, 2005, 23(4):458-463. YUAN X X, ZHANG H X, XIE Y F. The pitching static/dynamic derivatives computation based on CFD methods[J]. Acta Aerodynamics Sinica, 2005, 23(4):458-463(in Chinese).
[8] 袁先旭, 陈坚强, 王文正. 平头增阻再入体俯仰动态特性计算与流动机理分析[J]. 空气动力学学报, 2007, 25(3):300-305. YUAN X X, CHEN J Q, WANG W Z. Pitching dynamic stability computation for plane nose reentry vehicle and flow mechanism analysis[J]. Acta Aerodynamics Sinica, 2007, 25(3):300-305(in Chinese).
[9] 袁先旭, 张涵信, 谢昱飞. 飞船返回舱再入俯仰动稳定吸引子数值仿真[J]. 空气动力学学报, 2007, 25(4):431-436. YUAN X X, ZHANG H X, XIE Y F. Numerical simulation for dynamic stability in pitching of unfinned reentry capsule and bifurcation with mach number prediction[J]. Acta Aerodynamics Sinica, 2007, 25(4):431-436(in Chinese).
[10] BRYAN G, WILLIAMS W. The longitudinal stability of aerial gliders[J]. Proceedings of the Royal Society of London, 1904, 73(488-496):100-116.
[11] TOBAK M, SCHIFF L B. On the formulation of the aerodynamic characteristics in aircraft dynamics:NASA technical report, N76-15082/OSL[R]. Washington, D.C.:NASA, 1976.
[12] ETKIN B, TEICHMANN T. Dynamics of flight:Stability and control[J]. Journal of Guidance Control & Dynamics, 2009, 20(4):839-840.
[13] 任玉新, 刘秋生. 飞行器动态稳定性参数的数值计算方法[J]. 空气动力学学报, 1996, 14(2):117-126. REN Y X, LIU Q S. A numerical method for evaluating aerodynamic stability parameters of vehicles[J]. Acta Aerodynamica Sinica, 1996, 14(2):117-126(in Chinese).
[14] 袁先旭. 非定常流动数值模拟及飞行器动态特性分析研究[D]. 绵阳:中国空气动力研究与发展中心, 2002:111-115. YUAN X X. Numerical simulation for unsteady flows and research on dynamic characteristics of vehicle[D]. Mianyang:China Aerodynamics Research and Development Center, 2002:111-115(in Chinese).
[15] 陈坚强, 陈琦, 袁先旭, 等. 舵面操纵动态响应的数值模拟研究[J]. 力学学报, 2013, 45(2):302-306. CHEN J Q, CHEN Q, YUAN X X, et al. Numerical simulation study on dynamics response under rudder control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):302-306(in Chinese).
[16] 陈琦, 陈坚强, 袁先旭, 等. 谐波平衡法在动导数快速预测中的应用研究[J]. 力学学报, 2014, 46(2):183-190. CHEN Q, CHEN J Q, YUAN X X, et al. Application of a harmonic balance method in rapid predictions of dynamic stability derivatives[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):183-190(in Chinese).
[17] 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报, 2013, 34(4):787-797. YANG X Q, CHENG S K, YANG A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):787-797(in Chinese).
[18] 刘伟, 杨小亮, 赵云飞. 高超声速飞行器加速度导数数值模拟[J]. 空气动力学学报, 2010, 28(4):426-429. LIU W, YANG X L, ZHAO Y F. Numerical simulation of acceleration derivative of hypersonic aircraft[J]. Acta Aerodynamics Sinica, 2010, 28(4):426-429(in Chinese).
[19] 杨云军, 崔尔杰, 周伟江. 细长三角翼滚转/侧滑耦合运动的数值研究[J]. 航空学报, 2007, 28(1):14-19. YANG Y J, CUI E J, ZHOU W J. Numerical research on roll and sideslip coupling motions about a slender delta-wing[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):14-19(in Chinese).
[20] EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft and Rockets, 1988, 25(3):225-233.
[21] 孙涛, 高正红, 黄江涛. 基于CFD的动导数计算与减缩频率影响分析[J]. 飞行力学, 2011, 29(4):15-18. SUN T, GAO Z H, HUANG J T. Identify of aircraft dynamic derivatives based on CFD technology and analysis of reduce frequency[J]. Flight Dynamics, 2011, 29(4):15-18(in Chinese).
[22] COULTER S M, MARQUART E J. Cross and cross-coupling derivative measurements on the standard dynamics model at AEDC:AIAA-1982-0596[R]. Reston:AIAA, 1982.
[23] BUTLER R W. Aircraft motion sensitivity to cross and cross-coupling damping derivatives:NASA technical report, AD-A032654/6SL[R]. Washington, D.C.:NASA, 1977.
[24] BUTLER R W, LANGHAM T F. Sensitivity of aircraft spinning motion to dynamic cross-coupling and acceleration derivatives:NASA technical report, AD-A060516/2SL[R]. Washington, D.C.:NASA, 1979.
[25] LANGHAM T F. Aircraft motion sensitivity to dynamic stability derivatives:AIAA-1979-1621[R]. Reston:AIAA, 1979.
[26] 何植岱. 飞机大迎角稳定性对于交叉导数和加速度导数的灵敏度分析[J]. 空气动力学学报, 1987, 5(4):334-344. HE Z D. Sensitivity of aircraft stability to cross-coupling derivatives and angular acceleration derivatives at high angles of attack[J]. Acta Aerodynamics Sinica, 1987, 5(4):334-344(in Chinese).

Outlines

/