Fluid Mechanics and Flight Mechanics

Comparison of detached eddy simulation schemes on a subcritical flow around circular cylinder

  • TANG Hu ,
  • CHANG Shinan ,
  • CHENG Zhu ,
  • MA Lan
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2016-04-07

  Revised date: 2016-05-27

  Online published: 2016-06-07

Supported by

National Natural Science Foundation of China (11372026); Technique Innovation Foundation of Aviation Industry Corporation of China (2013F62302)

Abstract

Considering the requirements of simulating the flow around spray system in ground based icing test facilities, the accuracy of three detached eddy simulation (DES) schemes applied to three-dimensional subcritical flow around circular cylinder was examined through the comparison and analysis of instantaneous flow characteristics and flow statistic parameters. It is found that, from the point of instantaneous flow characterization, the k-ω Reynolds averaged Navier-Stokes (RANS) branch has remarkable influence on the accuracy of shear stress transport k-ω DES (SST k-ω DES). From the point of error range in flow statistics, the length of recirculation region and streamwise minimum velocity are the key parameters which determine the accuracy of numerical simulation on flow around circular cylinder. Compared comprehensively, the instantaneous flow characteristics and flow statistics obtained from SST k-ω DES have well agreements with the data of experiments and large eddy simulation (LES), which thus has the potential of being applied to computing the wake turbulence of spray system in ground based icing test facilities.

Cite this article

TANG Hu , CHANG Shinan , CHENG Zhu , MA Lan . Comparison of detached eddy simulation schemes on a subcritical flow around circular cylinder[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 120294 -120294 . DOI: 10.7527/S1000-6893.2016.0174

References

[1] MAREK J, OLSEN W A. Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels:NASA TM-87316[R]. Washington, D.C.:NASA, 1986.
[2] BARTLETT C S. Turbine engine icing spray bar design issues[J]. Journal of Engineering for Gas Turbines and Power, 1995, 117(3):406-412.
[3] DEANGELIS B C, LOTH E. Simulations of turbulent droplet dispersion in wind-tunnel icing clouds[J]. Journal of Aircraft, 1997, 34(2):213-219.
[4] HANCIR P, ANDERSON A, LOTH E. Computations of droplet distributions in the NASA icing research tunnel:AIAA-2000-0101[R]. Reston:AIAA, 2000.
[5] BHARGAVA C, LOTH E, POTAPCZUK M. Aerodynamic simulations of the NASA Glenn icing research tunnel:AIAA-2003-0566[R]. Reston:AIAA, 2003.
[6] LEE A, LOTH E. Droplet dispersion in the NASA Glenn icing research tunnel:AIAA-2010-7533[R]. Reston:AIAA, 2010.
[7] CLARK K, MALINOWSKI M, LOTH E. Air flow and liquid water concentration simulations of the 2012 NASA Glenn icing research tunnel:AIAA-2012-2936[R]. Reston:AIAA, 2012.
[8] STRELETS M. Detached eddy simulation of massively separated flows:AIAA-2001-0879[R]. Reston:AIAA, 2001.
[9] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//1st AFOSR International Conference on DNS/LES. Dayton, OH:Greyden Press, 1997:14-18.
[10] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202.
[11] VATSA V N, SINGER B A. Evaluation of a second accurate Navier-Stokes code for detached eddy simulation past a circular cylinder:AIAA-2003-4085[R]. Reston:AIAA, 2003.
[12] HANSEN R P, FORSYTHE I R. Large and detached eddy simulation of flow over a circular cylinder using unstructured grids:AIAA-2003-0775[R]. Reston:AIAA, 2003.
[13] ROY C J, DECHANT L J, PAYNE J L, et al. Bluff-body flow simulations using hybrid RANS/LES:AIAA-2003-3889[R]. Reston:AIAA, 2003.
[14] LO S C, HOFFMANN K A, DIETIKER J F. Numerical investigation of high Reynolds number flow over square and circular cylinders[J]. Journal of Thermophisics and Heat Transfer, 2005, 19(1):72-80.
[15] NISHINO T, ROBERTS G T, ZHANG X. Unsteady RANS and detached-eddy simulations of flow around a circular cylinder in ground effect[J]. Journal of Fluid and Structure, 2008, 24(1):18-33.
[16] JEE S, SHARIFF K. Detached-eddy simulation based on the υ2-f model[J]. International Journal of Heat and Fluid Flow, 2014, 46(2):84-101.
[17] 徐晶磊, 高歌, 杨焱. 基于当地流动结构的RANS/LES混合模型[J]. 航空学报, 2014, 35(11):2992-2999. XU J L, GAO G, YANG Y. A RANS/LES hybrid model based on local flow structure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2992-2999(in Chinese).
[18] 王翔宇, 李栋. SST-DES在小分离流动数值模拟中的改进[J]. 北京航空航天大学学报, 2014, 40(9):1245-1249. WANG X Y, LI D. Improved SST-DES in numerical simulation of mild separation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1245-1249(in Chinese).
[19] 李斌, 吴颂平. 基于湍流尺度的混合RANS/LES模型[J]. 北京航空航天大学学报, 2008, 34(7):755-758. LI B, WU S P. Hybrid RANS/LES model based on turbulent scale[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(7):755-758(in Chinese).
[20] 李栋, 焦予秦, SHOV I M, 等. Detached Eddy Simulation方法模拟不同类型翼型的失速特性[J]. 航空学报, 2005, 26(4):406-410. LI D, JIAO Y Q, SHOV I M, et al. Detached eddy simulation for airfoil stall[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4):406-410(in Chinese).
[21] 白俊强, 张扬, 华俊. 一种滤波SST方法在翼型深失速模拟中的应用[J]. 航空学报, 2013, 34(5):979-987. BAI J Q, ZHANG Y, HUA J. Application of filter-SST method in airfoil deep stall simulation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):979-987(in Chinese).
[22] 刘周, 杨云军, 周伟江, 等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2):372-380. LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):372-380(in Chinese).
[23] DECK S. Zonal-detached-eddy simulation of the flow around a high-lift configuration[J]. AIAA Journal, 2005, 43(11):2372-2384.
[24] FORSYTHE J R, SQUIRES K D, WURTZLER E, et al. Detached-eddy simulation of the F-15E at high alpha[J]. Journal of Aircraft, 2004, 41(2):193-200.
[25] BROCK J M, SUBBAREDDY P K, CANDLER G V. Detached-eddy simulation of hypersonic capsule wake flow[J]. AIAA Journal, 2015, 53(1):70-80.
[26] 杨小龙, 林铁平. 汽车外流场DES/RANS模拟研究[J]. 湖南大学学报(自然科学版), 2011, 38(1):29-34. YANG X L, LIN T P. DES and RANS of vehicle external flow field[J]. Journal of Hunan University (Natural Science), 2011, 38(1):29-34(in Chinese).
[27] 谢超, 谷正气, 杨振东, 等. 不同RANS/LES混合模型的汽车气动噪声分析[J]. 汽车工程, 2015, 37(4):440-445. XIE C, GU Z Q, YANG Z D, et al. Analysis on vehicle aerodynamic noise with different hybrid RANS/LES models[J]. Automotive Engineering, 2015, 37(4):440-445(in Chinese).
[28] 刘学强, 伍贻兆. 用DES数值模拟具有横向喷流的紊流流场[J]. 航空学报, 2004, 25(3):209-213. LIU X Q, WU Y Z. The computation of the lateral jet turbulence flow using DES method[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(3):209-213(in Chinese).
[29] 周昊, 岑可法, 樊建人. 分离涡方法模拟浓氮气固射流两相非稳态流动特性研究[J]. 中国电机工程学报, 2005, 25(7):1-6. ZHOU H, CEN K F, FAN J R. The numerical investigation on the transient characteristics of the gas-solid two-phase fuel rich-lean burn flow[J]. Proceedings of the CSEE, 2005, 25(7):1-6(in Chinese).
[30] 孙明波, 梁剑寒, 王振国. 二维凹腔超声速流动的混合RANS/LES模拟[J]. 推进技术, 2006, 27(2):119-123. SUN M B, LIANG J H, WANG Z G. Hybrid RANS/LES simulation of the supersonic flow over two-dimentional cavities[J]. Journal of Propulsion Technology, 2006, 27(2):119-123(in Chinese).
[31] 汪洪波, 孙明波, 吴海燕, 等. 超声速燃烧凹腔质量交换特性的混合RANS/LES模拟[J]. 航空动力学报, 2010, 25(1):41-46. WANG H B, SUN M B, WU H Y, et al. Hybrid RANS/LES simulation of mass exchange characteristics of cavity for supersonic combustion[J]. Journal of Aerospace Power, 2010, 25(1):41-46(in Chinese).
[32] 薛帮猛, 杨永. 基于两方程湍流模型的DES方法在超声速圆柱底部流动计算中的应用[J]. 西北工业大学学报, 2006, 24(5):544-547. XUE B M, YANG Y. Technical details in applying DES method to computing supersonic cylinder-base flow[J]. Journal of Northwestern Polytechnical University, 2006, 24(5):544-547(in Chinese).
[33] SHUR M, SPALART P R, STRELETS M, et al. Detached-eddy simulation of an airfoil at high angle of attack[C]//4th International Symposium on Engineering Turbulence Modeling and Experiments. Amsterdam:Elsevier Science Ltd., 1999:669-678.
[34] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy-viscosity model for high Reynolds number turbulent flow[J]. Computers & Fluids, 1995, 24(3):227-238.
[35] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1):625-632.
[36] NICHOLS R H. Comparison of hybrid RANS/LES turbulence models on a circular cylinder at high Reynolds number:AIAA-2005-0498[R]. Reston:AIAA, 2005.
[37] KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD=3900[J]. Physics of Fluids, 2000, 12(2):403-417.
[38] ONG L, WALLACE J. The velocity field of the turbulent very near wake of a circular cylinder[J]. Experiments in Fluids, 1996, 20(6):441-453.
[39] PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8):1-14.
[40] SPALART P R. Yong-person's guide to detached-eddy simulation grids:NASA/CR-2001-211032[R]. Washington, D.C.:NASA, 2001.
[41] BUNGE U, MOCKETT C, THIELE F. Guidelines for implementing detached-eddy simulation using different models[J]. Aerospace Science and Technology, 2007, 11(5):376-385.
[42] TRAVIN A, SHUR M, STRELETS M, et al. Detached-eddy simulations past a circular cylinder[J]. Flow, Turbulence and Combustion, 1999, 63(1):293-313.
[43] MANSY H, YANG P M, WILLIAMS D R. Quantitative measurements of three-dimensional structures in the wake of a circular cylinder[J]. Journal of Fluid Mechanics, 1994, 270:227-296.
[44] WILLIAMSON C H K, WU J, SHERIDAN J. Scaling of streamwise vortices in wakes[J]. Physics of Fluids, 1995, 7(10):2307-2309.
[45] MENTER F R. Two-equation eddy-viscosity turbulence model for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[46] DONG S, KARNIADAKIS G E, EKMEKCI A, et al. A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake[J]. Journal of Fluid Mechanics, 2006, 569:185-207.
[47] MA X, KARAMANOS G S, KARNIADAKIS G E. Dynamics and low-dimensionality of turbulent near wake[J]. Journal of Fluid Mechanics, 2000, 410:29-65.
[48] FRANKE J, FRANK W. Large eddy simulation of the flow past a circular cylinder at Re=3900[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10):1191-1206.

Outlines

/