Fluid Mechanics and Flight Mechanics

Wind tunnel test technique on high speed weapon delivery from internal weapons bay

  • XUE Fei ,
  • JIN Xin ,
  • WANG Yuchao ,
  • YANG Yinong
Expand
  • 1. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
    2. AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610091, China

Received date: 2016-01-25

  Revised date: 2016-06-03

  Online published: 2016-06-06

Supported by

Weapon Equipment Fund of Advanced Research

Abstract

The investigation of high speed weapon delivery from internal weapons bay is conducted in a 0.6 m×0.6 m sub-transonic and supersonic wind tunnel. The double-perspective technology, brighter optical path system and image analysis system of six degrees of freedom (6 DOF) are developed to obtain the models' images and the aerodynamic parameters at a high speed separation from carriers' internal weapons bay. The test technology can adjust the velocity and angular velocity independently, and ensure the speed error ≤5%, angular velocity error ≤10%, and repetition rate ≥95%. The data analysis is reliable because the test images are clearer due to using the brighter light source, and the precision of attack angle ≤0.2°. The optical paths are reasonable designed, and the double-perspective technology guarantees that the models' movement path and 6 DOF motion data are acquired. The new technology has been tested in a sub-transonic and supersonic wind tunnel, and has completed a complex multi-body separation test. The parameters are at or better than the existing technical indicators. The technology has served for the model test for many times, and meets the requirements of the wind tunnel test and research on the high speed separation from carriers' internal weapons bay.

Cite this article

XUE Fei , JIN Xin , WANG Yuchao , YANG Yinong . Wind tunnel test technique on high speed weapon delivery from internal weapons bay[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120114 -120114 . DOI: 10.7527/S1000-6893.2016.0177

References

[1] BJORGE S T. Flow around an object projected from a cavity into a supersonic freestream:AFIT/GAE/ENY/04-M02[R]. Ohio:Wright-Patterson Air Force Base, 2004.
[2] FLORA T J. Freedrop testing and cfd simulation of ice models from a cavity into supersonic flow:AFIT/GAE/ENY/12-S15[R]. Ohio:Wright-Patterson Air Force Base, 2012.
[3] SHIPMAN J, ARUNAJATESAN S, CAVALLO P A, et al. Flow control for enhanced store separation:AIAA-2007-1239[R]. Reston:AIAA, 2007.
[4] 唐上钦, 黄长强, 翁兴伟. 考虑气动干扰的导弹内埋式发射弹道研究[J]. 弹箭与制导学报, 2013, 33(3):138-142. TANG S Q, HUANG C Q, WENG X W. The study on trajectory of missile separating from cavity with aerodynamic interference considered journal of projectiles[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3):138-142(in Chinese).
[5] 史爱明, 叶正寅, 杨永年. 内埋式弹舱舱门气动载荷计算分析研究[J]. 航空计算技术, 2007, 37(3):5-6. SHI A M, YE Z Y, YANG Y N. Calculation and analysis for aerodynamic loadsacting on interiorweapon cabin's door[J]. Aeronautical Computing Technique, 2007, 37(3):5-6(in Chinese).
[6] 张俊祥, 冯金富, 于心一. 一种改善内埋式弹舱气流特性的方法[J]. 弹箭与制导学报, 2013, 33(3):165-168. ZHANG J X, FENG J F, YU X Y. A new method for improving cavity flow[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3):165-168(in Chinese).
[7] MERRICK J D. Influence of mach number and dynamic pressure on cavity tones and freedrop trajectories:AFIT-ENY-14-M-36[R]. Ohio:Wright-Patterson Air Force Base, 2014.
[8] BAKER W B, JR, KEEN S, MORGRET C. Validation of weapon separation predictions using F/A-22 flight test results:AIAA-2004-6803[R]. Reston:AIAA, 2004.
[9] FINNEY L P. Investigation of cavity flow effects on store separation trajectories:USNA-1531-2[R]. Annapolis:U.S. Naval Academy, 2010.
[10] JOHNSON R A, STANEK M J, GROVE J E. Store separation trajectory deviations due to unsteady weapons bay aerodynamics:AIAA-2008-0188[R]. Reston:AIAA, 2008.
[11] CARTER R, LIND R. Parametric modeling for store separation aerodynamics using system identication:AIAA-2012-4510[R]. Reston:AIAA, 2012.
[12] STALLINGS R L, JR. Store separation from cavities at supersonic flight speeds[J]. Journal of Spacecraft, 1983, 20(2):129-132.
[13] PURDON M L, HETREED C F, HUDSON M L. F-35 pre-flight store separation analyses:innovative techniques for affordability:AIAA-2009-0102[R]. Reston:AIAA, 2009.
[14] 朱收涛, 曹林平, 封普文. 平飞时内埋导弹弹射分离仿真与研究[J]. 电光与控制, 2012, 19(9):67-71. ZHU S T, CAO L P, FENG P W. Simulation of missile separation from internal weapon bay[J]. Electronics Optics & Control, 2012, 19(9):67-71(in Chinese).
[15] LEE J, CENKO A. Evaluation of the GBU-38 store separation from B-1 aft bay:AIAA-2008-0185[R]. Reston:AIAA, 2008.
[16] 冯必鸣, 聂万胜, 车学科. 初始投放条件对内埋式导弹分离轨迹的影响[J]. 飞行力学, 2009, 27(4):62-65. FENG B M, NIE W S, CHE X K. Effect of initialconditions on separation trajectory of the internal missile[J]. Flight Dynamics, 2009, 27(4):62-65(in Chinese).
[17] 常超, 丁海河. 内埋弹射武器机弹安全分离技术综述[J]. 现代防御技术, 2012, 40(5):67-74. CHANG C, DING H H. Review on missile store safety separation technology of embedded ejection weapons[J]. Modern Defence Technology, 2012, 40(5):67-74(in Chinese).
[18] KEEN S K. Trajectory simulations should match flight tests and other lessons learned in 30 years of store-separation analysis:AIAA-2009-0099[R]. Reston:AIAA, 2009.
[19] KHANA B, KNOWLES K, SADDINGTON A. Computational study of cavity flowfield at transonic speeds:AIAA-2009-00701[R]. Reston:AIAA, 2009.
[20] FEDOROV A, SHALAEV V. PC desktop aerodynamic models for store separation from weapons bay cavities and related vortical processes:(SYA) 37-2[R]. F-92201 Neuilly-Sue-Seine Cedex, France:NATO Research and Technology Organisation, 2003.
[21] 尉建刚, 桑为民, 雷熙薇. 内埋式武器舱的流动及气动特性分析[J]. 飞行力学, 2011, 29(2):29-32. YU J G, SANG W M, LEI X W. Analysis of the flow characteristics and aerodynamic problems in internal weapons bay[J]. Flight Dynamics, 2011, 29(2):29-32(in Chinese).
[22] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社, 2010:104-113. LI Z F. Wind tunnel special tests technique[M]. Beijing:Aviation Industry Press, 2010:104-113(in Chinese).

Outlines

/