ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effect of mesh topology on numerical simulation of DLR-F6 configuration
Received date: 2016-03-02
Revised date: 2016-05-26
Online published: 2016-06-02
Supported by
National Key Research and Development Program (2016YFB0200700)
Based on the TRIP 3.0(TRIsonic Platform V3.0) software and structure grid technology, the effects of different mesh topologies and control equations on aerodynamic characters of DLR-F6 wing-body configuration are studied. The study is implemented with the RANS/TLNS equations, as the same parameters of the experiment are used. Coarse, medium and fine meshes of O and H topologies are also generated for the simulation.The effects on the simulation of DLR-F6 wing-body configuration are studied from aerodynamic characters, pressure coefficient distribution curve and flow pattern on the surface. Compared with experimental data, the numerical results indicate that more accurate results can be obtained by adopting the H topology mesh and RANS equations on the simulations of flow field with small separation zone.
Key words: RANS equations; mesh topology; separated flow; grid density; aerodynamic character
LI Wei , MENG Dehong , HONG Junwu , LI Hua . Effect of mesh topology on numerical simulation of DLR-F6 configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(2) : 120177 -120183 . DOI: 10.7257/S1000-6893.2016.0168
[1] OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3):209-272.
[2] HAASE W, CHAPUT E, LESCHZINER M A. ECARP-European computational aerodynamics research project:Validation of CFD codes and assessment of turbulence models[R]. Wiesbaden:Vieweg & Sohn Verlagsgesellschaft mbH, 1997.
[3] LEVY D W, ZICKUHR T, VASSBERG J C, et al. Summary of data from the first AIAA CFD drag prediction workshop:AIAA-2002-0841[R]. Reston:AIAA, 2002.
[4] LAFLIN K R, KLAUSMEYER S M, ZICKUHR T, et al. Data summary from the second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(9):1165-1178.
[5] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(6):781-798.
[6] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA CFD drag prediction workshop:AIAA-2010-4547[R]. Reston:AIAA, 2010.
[7] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop:AIAA-2013-0046[R]. Reston:AIAA, 2013.
[8] RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag prediction workshop[J]. Computer & Fluids, 2005, 34(7):785-816.
[9] PENG S H, ELIASSON P. A comparison of turbulence models in prediction of flow around the DLR-F6 aircraft configuration:AIAA-2004-4718[R]. Reston:AIAA, 2004.
[10] MIRSUHIRO M, KAZUOMI Y. Comparison study of drag prediction by structured and unstructured mesh method[J]. Journal of Aircraft, 2008, 45(3):799-822.
[11] GODARD J L. F6 model tests in the ONERA S2MA wind tunnel[C]//Presented at the second AIAA CFD drag prediction workshop, Reston:AIAA, 2003.
[12] GATLIN G M, RIVERS M B, GOODLIFT S L, et al. Experimental invetigation of the DLR-F6 transport configuration in the national transonic facility(Invited):AIAA-2008-6917[R]. Reston:AIAA, 2008.
[13] VASSBERG J C, TINOCO E N, MANI M, et al. Comparison of NTF experimental data with CFD predictions from the third AIAA CFD drag prediction workshop:AIAA-2008-6918[R]. Reston:AIAA, 2008.
[14] RUDNIK R, SITZMANN M, GODARD J L, et al. Experimental invetigation of the wing-body juncture flow on the DLR-F6 configuration in the ONERA S2MA facility:AIAA-2009-4113[R]. Reston:AIAA, 2009.
[15] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术研究[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H, et al. Numerical simulation technology of high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese).
[16] 王运涛, 王光学, 张玉伦. 采用TRIP2.0软件计算DLR_F6构型的阻力[J]. 空气动力学学报, 2009, 27(1):108-113. WANG Y T, WANG G X, ZHANG Y L. Drag prediction of DLR-F6 configuration with TRIP2.0 software[J]. Acta Aerodynamica Sinica, 2009, 27(1):108-113(in Chinese).
[17] 王运涛, 王光学, 张玉伦. 采用TRIP2.0软件的确认:DPWII复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1):34-40. WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP2.0:numerical simulation of DPWII complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):34-40(in Chinese).
[18] 王运涛, 张玉伦, 洪俊武, 等. TRIP2.0_SOLVER的开发与应用[J]. 空气动力学学报, 2007, 25(2):163-168. WANG Y T, ZHANG Y L, HONG J W, et al. Development and application of TRIP2.0_SOLVER[J]. Acta Aerodynamica Sinica, 2007, 25(2):163-168(in Chinese).
[19] 王光学, 王运涛. TRIP2.0软件湍流模块的开发与确认[J]. 航空计算技术, 2007, 37(3):20-23. WANG G X, WANG Y T. Development and validation of turbulence models of TRIP2.0[J]. Aeronautical Computing Technique, 2007, 37(3):20-23(in Chinese).
[20] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[21] TINOCO E N. Drag prediction with the Zeus/CFL3D system:AIAA-2004-0552[R]. Reston:AIAA, 2004.
[22] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA CFD drag prediction workshop:AIAA-2010-4547[R]. Reston:AIAA, 2010.
/
〈 | 〉 |