ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Underactuated attitude stabilization for space tethered towing using constrained tension
Received date: 2016-01-13
Revised date: 2016-05-08
Online published: 2016-05-13
Supported by
National Natural Science Foundation of China (61005062, 11272256); the Fundamental Research Funds for the Central Universities (3102014JCQ01005); Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Z2016050)
During space tethered towing, the target and the space platform constitute a dumbbell-like tethered system, which only relies on the limited platform thrusts and tether tension to suppress the tether libration. An effective attitude stabilization strategy using bounded tension is proposed for such an underactuated system subject to input constraints. The dynamic model governing the attitude of the system is established. By solving the in-plane equilibrium equation numerically, the theoretical in-plane attitude commands are obtained, which are then optimized using Gauss pseudospectral method. The actual in-plane commands are thus yielded. An underactuated tension controller is designed based on hierarchical sliding mode theory, and an anti-windup auxiliary module is embedded to mitigate the tension saturation. Simulation results show that under the positive and constrained tension control, the tether can be deployed and retrieved smoothly by the platform, making the in-plane angle and tether length track the actual commands appreciably. The proposed strategy is also robust to the target swing and sensor errors.
WANG Bingheng , MENG Zhongjie , HUANG Panfeng . Underactuated attitude stabilization for space tethered towing using constrained tension[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3783 -3792 . DOI: 10.7527/S1000-6893.2016.0144
[1] ANDERSON K S, HAGEDOM P. Control of orbital drift of geostationary tethered satellites[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):10-14.
[2] MOSS R. Tether-payload transfer between circular orbits[C]//Proceedings of AIAA Joint Propulsion Conference. Reston:AIAA, 1990:1-9.
[3] NO T S, COCHRAN J E. Dynamics and control of a tethered flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(1):66-72.
[4] WANG B H, MENG Z J, HUANG P F. A towing orbit transfer method of tethered space robots[C]//Proceeding of the 2015 IEEE Conference Robotics and Biomimetics. Piscataway, NJ:IEEE Press, 2015:964-969.
[5] LIU H T, YANG L P, ZHANG Q B, et al. An investigation on tether-tugging de-orbit of defunct geostationary satellites[J]. Science China Technological Sciences, 2012, 55(7):2019-2027.
[6] SUN L, ZHAO G W, HUANG H, et al. Tether-dragging maneuver strategy and tether control method[C]//Proceedings of 2010 Asian-Pacific International Symposium on Aerospace Technology. Beijing:CSAA, 2010:719-723.
[7] ZHAO G W, SUN L, TAN S P, et al. Librational characteristics of a dumbbell modeled tethered satellite under small, continuous, constant thrust[J]. Journal of Aerospace Engineering, 2012, 227(5):857-872.
[8] 孙亮, 赵国伟, 黄海, 等. 面内轨道转移过程中的绳系系统摆振特性研究[J]. 航空学报, 2012, 33(7):1245-1254. SUN L, ZHAO G W, HUANG H, et al. Analysis of librational and vibrational characteristics for tethered system during orbital transfer in plane[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1245-1254(in Chinese).
[9] SUN L, ZHAO G W, HUANG H. Stability and control of tethered satellite with chemical propulsion in orbital plane[J]. Nonlinear Dynamics, 2013, 74(4):1113-1131.
[10] CHO S B, MCCLAMROCH N H. Optimal orbit transfer of a spacecraft with fixed length tether[J]. The Journal of the Astronautical Sciences, 2003, 51(2):195-204.
[11] 钟睿, 徐世杰. 基于直接配点法的绳系卫星系统变轨控制[J]. 航空学报, 2010, 31(3):572-578. ZHONG R, XU S J. Orbit transfer control for TSS using direct collocation method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):572-578(in Chinese).
[12] 刘海涛, 张青斌, 杨乐平, 等. 绳系拖曳离轨过程中的摆动抑制策略[J]. 国防科技大学学报, 2014, 36(6):164-170. LIU H T, ZHANG Q B, YANG L P, et al. Oscillation suppression strategy during tether-tugging reorbiting[J]. Journal of National University of Defense Technology, 2014, 36(6):164-170(in Chinese).
[13] WEN H, ZHU Z H, JIN D P, et al. Constrained tension control of a tethered space-tug system with only length measurement[J]. Acta Astronautica, 2016, 119:110-117.
[14] WILLIAMS P. Deployment/retrieval optimization for flexible tethered satellite systems[J]. Nonlinear Dynamics, 2008, 52(2):159-179.
[15] HU Q L. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits[J]. Nonlinear Dynamics, 2009, 55(4):301-321.
[16] ZHU Z, XIA Y Q, FU M Y. Adaptive sliding mode control for attitude stabilization with actuator saturation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4989-4906.
[17] XIAO B, HU Q L, ZHANG Y M. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[J]. IEEE Transactions on Control System Technology, 2012, 20(6):1605-1612.
[18] 时建明, 王洁, 叶继坤, 等. 吸气式高超声速飞行器输入受限自适应反演控制[J]. 固体火箭技术, 2012, 35(5):573-577. SHI J M, WANG J, YE J K, et al. Adaptive backstepping control for an air-breathing hypersonic vehicle with input constraints[J]. Journal of Solid Rocket Technology, 2012, 35(5):573-577(in Chinese).
[19] 尹佳杰, 都延丽. 近空间飞行器再入段的输入受限滑模姿态控制研究[C]//第32届中国控制会议. 北京:中国自动化学会, 2013:1064-1069. YIN J J, DU Y L. Sliding mode attitude control with input constraints for near space vehicles in reentry phase[C]//Proceedings of the 32nd Chinese Control Conference. Beijing:Chinese Association of Automation, 2013:1064-1069(in Chinese).
[20] HUANG P F, WANG D K, XU X D, et al. Coordinated control of tethered space robot using releasing characteristic of space tether[C]//Proceeding of the 2015 IEEE Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE Press, 2015:1542-1547.
/
〈 | 〉 |