ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical simulations of supersonic base flow field based on RANS/LES approaches
Received date: 2016-01-22
Revised date: 2016-05-12
Online published: 2016-05-12
Supported by
National Basic Research Program of China (2015CB755800); National Natural Science Foundation of China (11172240); Aeronautical Science Foundation of China (2014ZA53002)
Numerical investigation on supersonic base flow is performed using several Reynolds averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods based on k-ω shear stress transport (SST) model with compressibility correction, including delayed detached eddy simulation (DDES), modified-DDES (MDDES) and improved-DDES (IDDES) approaches. Third-order MUSCL-Roe and fifth-order WENO-Roe spatial scheme are applied in the investigation. The numerical results show plenty of small scale turbulence structure in supersonic base flow. The complex flow physics are comprehensively understood, which provides references for the base aerodynamic drag reduction and the application of RANS/LES hybrid methods to unsteady highly compressible flows in future research. Numerical dissipation effects of two spatial schemes are investigated. Computational results show that fifth-order WENO-Roe scheme is more validated than third-order MUSCL-Roe scheme when compared with experimental data. Furthermore, comparative analysis of the computational results with several RANS/LES hybrid methods is conducted. The results show that IDDES approach has better performance in regions near the wall than DDES and MDDES approaches.
ZHANG Lu , LI Jie . Numerical simulations of supersonic base flow field based on RANS/LES approaches[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120102 -120102 . DOI: 10.7527/S1000-6893.2016.0145
[1] HERRIN J L, DUTTON J C. Supersonic base flow experiments in the near wake of a cylindrical afterbody[J]. AIAA Journal, 1994, 32(1):77-83.
[2] BOURDON C J, DUTTON J C. Planar visualizations of large-scale turbulent structures in axisymmetric supersonic separated flows[J]. Physics of Fluids, 1999, 11(1):201-213.
[3] CHOI H, MOIN P. Grid-point requirements for large eddy simulation:Chapman's estimates revisited[J]. Physics of Fluids, 2012, 24(1):011702.
[4] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Proceeding of the First AFOSR International Conference on DNS/LES. Columbus:Greyden, 1997:137-147.
[5] SPALART P R, DECK S, SHUR M, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[6] MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[C]//The Aerodynamics of Heavy Vehicles:Trucks, Buses and Trains. Berlin Heidelberg:Springer-Verlag, 2004:339-352.
[7] TRAVIN A, SHUR M, STRELETS M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[C]//Advances in LES of Complex Flows. Norwell:Kluwer Academic, 2006:239-254.
[8] SHUR M L, SPALART P R, STRELETS M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[9] XIAO Z, LIU J, HUANG J, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136.
[10] XIAO Z, LUO K. Improved delayed detached-eddy simulation of massive separation around triple cylinders[J]. Acta Mechanica Sinica, 2015, 31(6):799-816.
[11] XIAO Z, LIU J, LUO K, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1):107-125.
[12] XIAO L, XIAO Z, DUAN Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[13] HUANG J, XIAO Z, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China-Physics Mechanics & Astronomy, 2012, 55(2):260-271.
[14] FORSYTHE J R, HOFFMANN K A, CUMMINGS R M, et al. Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow[J]. Journal of Fluids Engineering, 2002, 124(4):911-923.
[15] BAURLE R A, TAM C J, EDWARDS J R, et al. Hybrid simulation approach for cavity flows:blending, algrithm and boundary treatment issues[J]. AIAA Journal, 2003, 41(8):1463-1480.
[16] KAWAI S, FUJⅡ K. Computational study of supersonic base flow using hybrid turbulence methodology[J]. AIAA Journal, 2005, 43(6):1256-1275.
[17] SIMON F, DECK S, GUILLEN P, et al. Reynolds-averaged navier-stokes/large-eddy simulations of supersonic base flow[J]. AIAA Journal, 1994, 44(11):2578-2590.
[18] 薛帮猛, 杨永. 基于两方程湍流模型的DES方法在超音速圆柱底部流动计算中的应用[J]. 西北工业大学学报, 2006, 24(5):544-547. XUE B M, YANG Y. Technical details in applying DES method to computing supersonic cylinder-base flow[J]. Journal of Northwestern Polytechnical University, 2006, 24(5):544-547(in Chinese).
[19] 肖志祥, 符松. 用RANS/LES混合方法研究超声速底部流动[J]. 计算物理, 2009, 26(2):221-230. XIAO Z X, FU S. Study on supersonic base flow using RANS/LES methods[J]. Chinese Journal of Computational Physics, 2009, 26(2):221-230(in Chinese).
[20] 高瑞泽, 阎超. LES/RANS混合方法对超声速底部流动的应用[J]. 北京航空航天大学学报, 2011, 37(9):1095-1099. GAO R Z, YAN C. LES/RANS hybrid method for supersonic axisymmetric base flow[J]. Journal of University of Aeronautics and Astronautics, 2011, 37(9):1095-1099(in Chinese).
[21] 陈琦, 司芳芳, 陈坚强, 等. RANS/LES在超声速突起物绕流中的应用研究[J]. 航空学报, 2013, 34(7):1531-1537. CHEN Q, SI F F, CHEN J Q, et al. Study of protuberances in supersonic flow with RANS/LES method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1531-1537(in Chinese).
[22] HARTEN A, HYMAN J M. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 50(2):235-369.
[23] MENTER F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[24] SUZEN Y B, HOFFMANN K A. Investigation of supersonic jet exhaust flow by one- and two-equation turbulence models:AIAA-1998-0322[R]. Reston:AIAA, 1998.
[25] GRITSKEVICH M S, GARBARUK A V, SCHUTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88(3):431-449.
[26] VATSA V N, LOCKARD D P. Assessment of hybrid rans/les turbulence model for aeroacoustics applications:AIAA-2010-4011[R]. Reston:AIAA, 2010.
[27] VAN LEER B. Towards the ultimate conservative difference scheme V:A second order sequel to godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
[28] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6):3191-3211.
[29] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[30] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285(2):69-94.
/
〈 | 〉 |