ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Analysis and optimization of two-degree of freedom LEMs flexure hinge
Received date: 2016-04-14
Revised date: 2016-05-04
Online published: 2016-05-10
Supported by
National Natural Science Foundation of China (50905075); Six Talent Peaks Project in Jiangsu Province (ZBZZ-012); Fundamental Research Funds for the Central Universities (JUSRP51316B); Open Project of State Key Laboratory of Mechanical System and Vibration of China (MSV201712); Open Project of the State Key Laboratory of Robotics and System of China (SKLRS-2016-KF-06)
In order to improve the flexibility of lamina emergent mechanisms (LEMs), a two-degree of freedom LEMs flexure hinge that can realize in-plane and out-of-plane rotation is proposed. The structure of the two-degree of freedom LEMs flexure hinge is designed combining the features of elliptical flexure hinge with LET flexure hinge. The theoretical models of the rotational equivalent stiffness along axes y and z for the two-degree of freedom LEMs flexure hinge are deduced using spring models. The correctness of the theoretical models is verified by comparing the theoretical calculation and the finite element analysis. The impact of structural parameters on two kinds of rotational stiffness is also discussed. An optimization model is then established to increase the rotation property of two-degree of freedom LEMs flexure hinge, and the structure parameters are optimized by adaptive particle swarm optimization. The results of optimization show that the rotation property is improved significantly when the rotational stiffness in the y and the z directions decreases by 83.60% and 92.73% respectively. The optimization is in line with our expectation.
LIU Kai , CAO Yi , ZHOU Rui , GE Shuyi , DING Rui . Analysis and optimization of two-degree of freedom LEMs flexure hinge[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(2) : 420317 -420326 . DOI: 10.7527/S1000-6893.2016.0142
[1] HOWELL L L. Compliant mechanisms[M]. New York:John Wiley and Sons, 2001:1-24.
[2] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13):53-68(in Chinese).
[3] 刘承平, 赵宏哲, 毕树生, 等. 一种用于机载设备的高精度转动型柔性铰链[J]. 航空学报, 2013, 34(3):694-702. LIU C P, ZHAO H Z, BI S S, et al. A precise rotational flexure pivot for airborne equipment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):694-702(in Chinese).
[4] 黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构的拓扑优化[J]. 航空学报, 2007, 28(4):988-992. HUANG J, GE W J, YANG F. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):988-992(in Chinese).
[5] HENEIN S, SPANOUDAKIS P, DROZ S, et al. Flexure pivot for aerospace mechanisms[C]//Proceedings of 10th European Space Mechanisms and Tribology Symposium. San Sebastian:European Space Agency, 2003:1-4.
[6] 谢海斌, 张代兵, 沈林成. 基于柔性长鳍波动推进的仿生水下机器人设计与实现[J]. 机器人, 2006, 28(5):525-529. XIE H B, ZHANG D B, SHEN L C. Design and realization of a bionic underwater vehicle propelled by undulation of a long flexible fin[J]. Robot, 2006, 28(5):525-529(in Chinese).
[7] 万能, 苟圆捷, 莫蓉. 基于智能元件的柔性夹具设计新方法[J]. 计算机集成制造系统, 2012, 18(11):2362-2369. WAN N, GOU Y J, MO R. New method for flexible fixture design based on smart fixture unit[J]. Computer Integrated Manufacturing Systems, 2012, 18(11):2362-2369(in Chinese).
[8] ALBRECHTSEN N B, MAGLEBY S P, HOWELL L L. Identifying potential applications for lamina emergent mechanisms using technology push product development[C]//Proceeding of the ASME IDETC/CIE 2010. New York:ASME, 2010, 2:513-521.
[9] WILDING S E, HOWELL L L, MAGLEBY S P. Spherical lamina emergent mechanisms[J]. Mechanism and Machine Theory, 2011, 49(3):187-197.
[10] JACOBSEN J O, HOWELL L L, MAGLEBY S P, et al. Components for the design of lamina emergent mechanisms[C]//Proceeding of ASME 2007 International Mechanical Engineering Congress and Exposition. New York:ASME, 2007, 10:165-174.
[11] HINKLEY D, SIMBURGER E J. A multifunctional flexure hinge for deploying omnidirectional solar arrays[C]//42nd AIAA/ASME/ASCE/AHS/ASC Structural Dynamics and Materials Conference. Reston:AIAA, 2001:586-593.
[12] WOOD R. Design, fabrication, and analysis of a 3DOF, 3 cm flapping-wing MAV[C]//Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2007:1576-1581.
[13] 新浪网络公司. 美研制微型机器蜜蜂:高度仅2.4毫米[EB/OL]. (2012-02-23)[2016-04-28]. http://tech.sina.com.cn/d/2012-02-23/08276759230.shtml. SINA. The United States developed micro machine bees:Its height is only 2.4 mm[EB/OL]. (2012-02-23)[2016-04-28]. http://tech.sina.com.cn/d/2012-02-23/08276759230.shtml(in Chinese).
[14] MAGLEBY S P, HOWELL L L, WINDER B G. A study of joints suitable for lamina emergent mechanisms[C]//Proceeding of the ASME IDETC/CIE 2008. New York:ASME, 2008:339-349.
[15] JACOBSEN J O, CHEN G, HOWELL L L, et al. Lamina emergent torsional (LET) joint[J]. Mechanism and Machine Theory, 2009, 44(11):2098-2109.
[16] 邱丽芳, 韦志鸿, 俞必强, 等. LET柔性铰链的等效刚度分析及其参数优化[J]. 工程力学, 2014, 31(1):188-193. QIU L F, WEI Z H, YU B Q, et al. Analysis of equivalent stiffness and parameter optimization of let flexure hinge[J]. Engineering Mechanics, 2014, 31(1):188-193(in Chinese).
[17] MAGLEBY S P, FERRELL D B, ISAAC Y F, et al. Development of criteria for lamina emergent mechanism flexures with specific application to metals[J]. Journal of Mechanical Design, 2011, 133(3):586-599.
[18] WILDING S E, HOWELL L L, MAGLEBY S P. Introduction of planar compliant joints designed for combined bending and axial loading conditions in lamina emergent mechanisms[J]. Mechanism and Machine Theory, 2012, 56(1):1-15.
[19] 曹毅, 刘凯, 单春成, 等. 抗拉柔性铰链的理论建模及有限元分析[J]. 光学精密工程, 2016, 24(1):119-125. CAO Y, LIU K, SHAN C C, et al. Theory modeling and finite element analysis of tensile flexure hinge[J]. Optics and Precision Engineering, 2016, 24(1):119-125(in Chinese).
[20] 陈贵敏, 贾建援, 刘小院, 等. 椭圆柔性铰链的计算与分析[J]. 工程力学, 2006, 23(5):152-156. CHEN G M, JIA J Y, LIU X Y, et al. Design calculation and analysis of elliptical flexure hinge[J]. Engineering Mechanics, 2006, 23(5):152-156(in Chinese).
[21] 陈贵敏, 刘小院, 贾建援. 椭圆柔性铰链的柔度计算[J]. 机械工程学报, 2006, 23(S1):111-115. CHEN G M, LIU X Y, JIA J Y. Compliance calculation of elliptical flexure hinge[J]. Journal of Mechanical Engineering, 2006, 23(S1):111-115(in Chinese).
[22] 陈贵敏, 韩琪. 深切口椭圆柔性铰链[J]. 光学精密工程, 2009, 17(3):570-575. CHEN G M, HAN Q. Deep-notch elliptical flexure hinge[J]. Optics and Precision Engineering, 2009, 17(3):570-575(in Chinese).
[23] 卢倩, 黄卫清, 王寅, 等. 深切口椭圆柔性铰链优化设计[J]. 光学精密工程, 2015, 23(1):206-215. LU Q, HUANG W Q, WANG Y, et al. Optimization design of deep-notch elliptical flexure hinges[J]. Optics and Precision Engineering, 2015, 23(1):206-215(in Chinese).
[24] CHEN G, HOWELL L L. Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms[J]. Precision Engineering, 2009, 33(3):268-274.
/
〈 | 〉 |