Fluid Mechanics and Flight Mechanics

A dynamic assembling method based on adaptive tree structure for hierarchical overset grids

  • LI Xiaodong ,
  • QU Kun ,
  • CAI Jinsheng
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-03-21

  Revised date: 2016-04-27

  Online published: 2016-05-04

Supported by

National Basic Research Program of China

Abstract

The overset or chimera grid is an effective method for large-scale numerical simulation of aerodynamic problems with complex geometry, especially those with bodies in relative motion (such as the rotorcraft, store/aircraft separation). The method of adaptive cartesian grids based on the tree structure is applied to perform fast hole cutting and donor searching in the overset grid assembly process. In this technique, the geometry is represented by adaptive cartesian grids of binary trees, and this can achieve quick locating in the hole cutting. Adaptive cartesian grids of octrees are used to decompose the flow field, making the donor searching efficient. By means of a minimal overlapping-domain approach and a hierarchical strategy for overset grids, which both employ the rule of wall distance, the efficiency and quality of overset grid assembly are improved. For dynamic problems of moving bodies, multiple binary trees and octrees are applied to decrease the redundant work of updating data in procedures of overset grid assembly, substantially reducing the time consumption. The test cases demonstrate that the technique in this paper is computationally efficient and can be successfully employed to problems of multiple moving bodies.

Cite this article

LI Xiaodong , QU Kun , CAI Jinsheng . A dynamic assembling method based on adaptive tree structure for hierarchical overset grids[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 120243 -120243 . DOI: 10.7527/S1000-6893.2016.0135

References

[1] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[2] BENEK J A, STEGER J L, DOUGHERTY F C. A flexible grid embedding technique with application to the Euler equations:AIAA-1983-1944[R]. Reston:AIAA, 1983.
[3] NOACK R W, SLOTNICK J P. A summary of the 2004 overset symposium on composite grids and solution technology:AIAA-2005-0921[R]. Reston:AIAA, 2005.
[4] CHAN W M. Overset grid technology development at NASA Ames Research Center[J]. Computers & Fluids, 2009, 38(3):496-503.
[5] CHIU I T, MEAKIN R L. On automating domain connectivity for overset grids:AIAA-1995-0854[R]. Reston:AIAA, 1995.
[6] MEAKIN R L. Object X-rays for cutting holes in composite overset structured grids:AIAA-2001-2537[R]. Reston:AIAA, 2001.
[7] ROGERS S E, SUHS N E, DIETZ W E. PEGASUS 5:An automated preprocessor for overset-grid computational fluid dynamics[J]. AIAA Journal, 2003, 41(6):1037-1045.
[8] WANG Z J, PARTHASARATHY V, HARIHARAN N. A fully automated Chimera methodology for multiple moving body problems:AIAA-1998-0217[R]. Reston:AIAA, 1998.
[9] NOACK R W. SUGGAR:A general capability for moving body overset grid assembly:AIAA-2005-5117[R]. Reston:AIAA, 2005.
[10] CHO K W, KWON J H, LEE S. Development of a fully systemized chimera methodology for steady/unsteady problems[J]. Journal of Aircraft, 1999, 36(6):973-980.
[11] NOACK R W, BOGER D A, KUNZ R F, et al. Suggar++:An improved general overset grid assembly capability:AIAA-2009-3992[R]. Reston:AIAA, 2009.
[12] 袁武, 阎超, 席柯. 洞映射方法的研究和改进[J]. 北京航空航天大学学报, 2012, 38(4):563-568. YUAN W, YAN C, XI K. Investigation and enhancement of hole mapping method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4):563-568(in Chinese).
[13] 袁武, 阎超, 杨威. 割补法的改进和应用[J]. 空气动力学学报, 2013, 31(6):704-709. YUAN W, YAN C, YANG W. Enhancement and application of cut-paste algorithm[J]. Acta Aerodynamica Sinica, 2013, 31(6):704-709(in Chinese).
[14] 王文, 阎超, 袁武, 等. 新型重叠网格洞面优化方法及其应用[J]. 航空学报, 2016, 27(3):826-835. WANG W, YAN C, YUAN W, et al. A new kind of overlap optimization algorithm and its applica-tions[J]. Acta Aeronautica et Astronautica Sinica, 2016, 27(3):826-835(in Chinese).
[15] 王文, 阎超, 袁武, 等. 鲁棒的结构网格自动化重叠方法[J]. 航空学报, 2016, 37(10):2980-2991. WANG W, YAN C, YUAN W, et al. A robust and automatic structured overlapping grid approach[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2980-2991(in Chinese).
[16] 淮洋, 郝海兵, 姚冰, 等. 一种改进型洞映射法[J]. 航空计算技术, 2015, 45(2):31-34. HUAI Y, HAO H B, YAO B, et al. An improved method of hole-map[J]. Aeronautical Computing Technique, 2015, 45(2):31-34(in Chinese).
[17] LEE Y, BAEDER J D. Implicit hole cutting-A new approach to overset grid connectivity:AIAA-2003-4128[R]. Reston:AIAA, 2003.
[18] LANDMANN B, MONTAGNAC M. A highly automated parallel Chimera method for overset grids based on the implicit hole cutting technique[J]. International Journal for Numerical Methods in Fluids, 2011, 66(6):778-804.
[19] 刘秋洪, 屈崑, 蔡晋生, 等. 嵌套重叠网格的构造策略及其隐式切割[J]. 中国科学:物理学力学天文学, 2013, 42(2):186-198. LIU Q H, QU K, CAI J S, et al. An automated Chimera method based on a hierarchical overset grid strategy and the implicit hole cutting technique[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2013, 42(2):186-198(in Chinese).
[20] 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2):208-217. XU J, LIU Q H, CAI J S, et al. Drag prediciton based on overset grids with implict hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):208-217(in Chinese).
[21] DRUYOR JR C T, JONES W T, KARMAN JR S L. A survey of overset domain assembly methods:AIAA-2015-0910[R]. Reston:AIAA, 2015.
[22] DIETZ W E, JACOCKS J L, FOX J H. Application of domain decomposition to the analysis of complex aerodynamic configurations[C]//3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations. Houston, Texas:SIAM, 1989:428-450.
[23] CAI J, TSAI H M, LIU F. A parallel viscous flow solver on multi-block overset grids[J]. Computers & Fluids, 2006, 35(10):1290-1301.
[24] CHIN V D, PETERS D W, SPAID F W, et al. Flowfield measurements about a multi-element airfoil at high Reynolds numbers:AIAA-1993-3137[R]. Reston:AIAA, 1993.
[25] HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment:ADB152669[R]. Arnold:Arnold Engineering Development Center, 1991.

Outlines

/