Numerical Simulation Investigations of Unsteady Flow

Roughness element induced hypersonic boundary layer transition

  • DUAN Zhiwei ,
  • XIAO Zhixiang
Expand
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2016-01-18

  Revised date: 2016-04-26

  Online published: 2016-04-29

Supported by

National Natural Science Foundation of China (11372159);China Postdoctoral Science Foundation (2015M571029);National Key Research and Development Project (2016YFA0401200)

Abstract

Hypersonic boundary layer transition from laminar to turbulent induced by different isolated roughness elements is investigated using direct numerical simulation based on finite volume formulation. To explore the transition mechanism through resolving the small flow structure, and capture shock wave in hypersonic flow, the high order minimized dispersion and controllable dissipation (MDCD) scheme is used to reconstruct the convection terms of Navier-Stokes equations. The numerical results agree well with experimental data. The numerical method adopted in this article is able to resolve small flow structures and their break-up and instability procedure. And it shows that the transition is dominated by the instability of the three-dimensional shear layer on top of the roughness elements. The effect of roughness element shape and geometrical parameters on transition mechanisms, and the transition results of multiple roughness elements are quantitatively studied.

Cite this article

DUAN Zhiwei , XIAO Zhixiang . Roughness element induced hypersonic boundary layer transition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(8) : 2454 -2463 . DOI: 10.7527/S1000-6893.2016.0130

References

[1] WHITEHEAD A, JR. NASP aerodynamics:AIAA-1989-5013[R]. Reston:AIAA, 1989.
[2] VAN DRIEST E R, BLUMER C B. Boundary-layer at supersonic speeds-three dimensional roughness effects (spheres):SID 61-275[R]. Wichita:North American Aviation, Inc., 1961.
[3] 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学,2012, 26(1):1-6. ZHAO H Y, ZHOU Y, NI H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6(in Chinese).
[4] SCHNEIDER S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209.
[5] CASPER K M, WHEATON B M, JOHNSON H B, et al. Effect of freestream noise on roughness-induced transition at Mach 6:AIAA-2008-4291[R]. Reston:AIAA, 2008.
[6] VAN DRIEST E R, MCCAULEY W. The effect of controlled three-dimensional roughness on boundary layer transition at supersonic speeds[J]. Journal of Aerospace Science, 1960, 27(4):261-271
[7] HICKS R M, HARPER W R, JR. A comparison of spherical and triangular boundary-layer tips on a flat plate at supersonic speeds:NASA, TM-X-2146[R]. Washington, D.C.:NASA, 1970.
[8] BERRY S A, AUSLENDER A H. Hypersonic boundary-layer trip development for hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6):853-864.
[9] WHITEHEAD A H, JR. Flowfield and drag characteristics of several boundary-layer tripping elements in hypersonic flow:NASATND-5454[R]. Washington, D.C.:NASA, 1969.
[10] TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418.
[11] DANEHY P M, IVEY C B, INMAN J A, et al. High-speed PLIF imaging of hypersonic transition over discrete cylindrical roughness:AIAA-2010-0703[R]. Reston:AIAA, 2010.
[12] DANEHY P M, BATHEL B F, IVEY C B, et al. NO PLIF study of hypersonic transition over a discrete hemispherical roughness element:AIAA-2009-0394[R]. Reston:AIAA, 2009.
[13] 周玲, 阎超, 孔维萱. 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014, 35(6):1487-1495. ZHOU L, YAN C, KONG W X. Numerical simulation of forced boundary layer transition on hypersonic vehicle forebody[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1487-1495(in Chinese).
[14] BERNARDINI M, PIROZZOLI S, ORLANDI P. Compressibility effects on roughness-induced boundary layer transition[J]. International Journal of Heat and Fluids Flow, 2012, 35(35):45-51.
[15] BARTKOWICZ M D, SUBBAREDDY P K, CANDLER G V. Numerical simulations of roughness induced instability in the purdue mach 6 wind tunnel:AIAA-2010-4723[R]. Reston:AIAA, 2010.
[16] IYER P S, MAHESH K. High-speed boundary layer transition induced by a discrete roughness element[J]. Journal of Fluid Mechanics, 2013, 729:524-562.
[17] MUPPIDI S, MAHESH K. Direct numerical simulations of roughness-induced transition in supersonic boundary layers[J]. Journal of Fluid Mechanics, 2012, 693:28-56.
[18] TULLIO N D, PAREDES P, SANDHAM N D, et al. Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer[J]. Journal of Fluid Mechanics, 2013, 735:613-646.
[19] SUN Z S, REN Y X, LARRICQ C, et al. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence[J]. Journal of Computational Physics, 2011, 230(12):4616-4635.
[20] WANG Q J, REN Y X, SUN Z S. High resolution finite volume scheme based on minimized dispersion and controllable dissipation reconstruction[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(2):423-431.
[21] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by an isolated cylindrical roughness element[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(12):2330-2345.
[22] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by a cylindrical roughness element:AIAA-2013-3112[R]. Reston:AIAA, 2013.
[23] WHEATON B M, SCHNEIDER S P. Roughness-induced instability in a hypersonic laminar boundary layer[J].AIAA Journal, 2012, 50(6):1245-1256.
[24] WHEATON B M, BARTKOWICZ M D, SUBBAREDDY P K, et al. Roughness-induced instabilities at Mach 6:A combined numerical and experimental study:AIAA-2011-3248[R]. Reston:AIAA, 2011.

Outlines

/