ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A measurement approach for ice shape based on variational segmentation model
Received date: 2016-02-26
Revised date: 2016-04-26
Online published: 2016-04-28
Supported by
National Natural Science Foundation of China (11172314, 11472296); National Key Basic Research Program of China (2015CB755800)
Ice shape is one of the key elements in an icing wind tunnel test. In order to measure ice shape efficiently, a non-contact measurement approach is proposed based on a variational segmentation model. The primary work of the proposed approach is to obtain shape curves by segmenting the overhead view image of airfoil. With exact transformation of the curves, the ice shape can be determined. In the segmentation procedure, a novel energy function is presented by using a constructed region characteristic function at the beginning. And then the selective segmentation which is for the purpose of removing the interference of unrelated objects or factors and getting a more accurate result can be implemented by minimizing the energy. The proposed approach has been successfully applied to ice shape measurement, which indicates that it is viable. And the quantitative result of error analysis demonstrates that the proposed measurement approach is highly accurate. Moreover, the measurement test on noisy image shows that it is robust to noise. The proposed approach can be easily applied to other fields which are related to shape measurement.
LI Weibin , YI Xian , DU Yanxia , ZHOU Zhihong . A measurement approach for ice shape based on variational segmentation model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120167 -120167 . DOI: 10.7527/S1000-6893.2016.0129
[1] THOMAS S K, CASSONI R P. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5):841-854.
[2] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2007:6-17. YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang:China Aerodynamics Research and Development Center, 2007:6-17(in Chinese).
[3] 白天, 朱春玲, 李清英, 等. 压电双晶片悬臂梁结构用于结冰探测的研究[J]. 航空学报, 2013, 34(5):1073-1082. BAI T, ZHU C L, LI Q Y, et al. Study of bimorph piezoelectric cantilever structure used on icing detection[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1073-1082(in Chinese).
[4] 易贤, 朱国林, 王开春, 等. 结冰风洞试验水滴直径选取方法[J]. 航空学报, 2010, 31(5):877-882. YI X, ZHU G L, WANG K C, et al. Selection of water droplet diameter in icing wind tunnel test[J]. Acta Aeronautia et Astronautica Sinica, 2009, 31(5):877-882(in Chinese).
[5] 张丽芬, 张美华, 吴丁毅, 等. 旋转帽罩结冰相似准则的研究[J]. 推进技术, 2015, 36(8):1164-1169. ZHANG L F, ZHANG M H, WU D Y, et al. Research on icing scaling law for rotating cone[J]. Journal of Propulsion Technology, 2015, 36(8):1164-1169(in Chinese).
[6] 盛强, 邢玉明, 何超. 一种结冰相似准则分析方法及数值验证[J]. 黑龙江大学自然科学学报, 2009, 26(3):412-416. SHENG Q, XING Y M, HE C. Analysis and verification of an icing scaling method[J]. Journal of Natural Science of Heilongjiang University, 2009, 26(3):412-416(in Chinese).
[7] 杜雁霞, 桂业伟, 肖春华, 等. 溢流条件下飞机结冰过程的传热特性研究[J]. 航空动力学报, 2009, 24(9):1966-1971. DU Y X, GUI Y W, XIAO C H, et al. Investigation of heat transfer characteristics of aircraft icing under runback water[J]. Journal of Aerospace Power, 2009, 24(9):1966-1971(in Chinese).
[8] 马辉, 张大林, 孟繁鑫, 等. 复合材料部件电加热防冰性能试验[J]. 航空学报, 2013, 34(8):1846-1853. MA H, ZHANG D L, MENG F X, et al. Experiment of electro-thermal anti-icing on a composite assembly[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1846-1853(in Chinese).
[9] 李清英, 朱春玲, 白天. 电脉冲除冰系统的除冰实验与数值模拟[J]. 航空动力学报, 2012, 27(2):350-356. LI Q Y, ZHU C L, BAI T. De-icing experiment and numerical simulation of the electro-impulse de-icing system[J]. Journal of Aerospace Power, 2012, 27(2):350-356(in Chinese).
[10] LEE S, BROEREN A, ADDY H, et al. Development of 3D ice accretion measurement method[C]//4th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2012:1-17.
[11] KASS M, WITKIN A, TERZOPOULOS D. Snakes:Active contour models[J]. International Journal of Computer Vision, 1988, 1(4):321-331.
[12] CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277.
[13] LI C, XU C, GUI C, et al. Level set evolution without re-initialization:A new variational formulation[C]//Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2010:430-436.
[14] CHUNG G, VESE L A. Image segmentation using a multilayer level-set approach[J]. Computing and Visualization in Science, 2009, 12(6):267-285.
[15] LIU W Y, RUAN D. Segmentation of left ventricle with a coupled length regularization and sparse composite shape prior:a variational approach[J]. AIMS Medical Science, 2015, 2(4):295-302.
[16] CHUAN X, HAIGANG S, HONGLI L, et al. An automatic optical and SAR image registration method with iterative level set segmentation and SIFT[J]. International Journal of Remote Sensing, 2015, 26(15):3997-4017.
[17] PAZ L M, PINIES P, NEWMAN P. A variational approach to online road and path segmentation with monocular vision[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2015:1633-1639.
[18] LI W B, YI X, SONG S H. Convex background removed model for image segmentation using the split Bregman method[J]. Journal of Information and Computational Science, 2015, 12(17):6641-6652.
[19] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. New York:Springer, 2002:51-72.
[20] BERTSEKAS D P. Constrained optimization and Lagrange multiplier methods[M]. Salt Lake City:Academic Press, 1982:96-156.
[21] GOLDSTEIN T, OSHER S. The split Bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):323-343.
[22] 李伟斌, 易贤, 宋松和. 一种图像分割的快速不动点算法[J]. 电子与信息学报, 2015, 37(10):2390-2396. LI W B, YI X, SONG S H. Fast fixed-point algorithm for image segmentation[J]. Journal of Electronics & Information Technology, 2015, 37(10):2390-2396(in Chinese).
/
〈 | 〉 |