Fluid Mechanics and Flight Mechanics

Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle

  • YANG Zhichun ,
  • LIU Liyuan ,
  • WANG Xiaochen
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2016-01-07

  Revised date: 2016-04-03

  Online published: 2016-04-20

Supported by

National Natural Science Foundation of China (11472216)

Abstract

Hypersonic vehicle panel in combination with unsteady aerodynamic pressure, thermal loading and acoustic loading exhibits a complex nonlinear aeroelastic vibration response. The panel shows a complex snap-through response, especially in the vicinity of the critical flutter dynamic pressure. Based on von Karman large deformation plate theory, the equations of motion under the interaction of aerodynamic pressure and thermal-acoustic loading are established. In addition, the buckling deformation and thermal buckling instability of a heated panel in supersonic flow is analyzed. According to the potential well theory, the mechanism of snap-through phenomenon is explored. By defining zero-cross frequency, a quantitative classification method for snap-through motion is proposed. Furthermore, the critical sound pressure level under different dynamic pressure and temperature conditions is calculated. The results show that when the dynamic pressure is smaller than the critical flutter dynamic pressure, the depth of the potential well first increases and then decreases with dynamic pressure increasing. And the depth of potential well increases with the increase of temperature rise.

Cite this article

YANG Zhichun , LIU Liyuan , WANG Xiaochen . Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3578 -3587 . DOI: 10.7527/S1000-6893.2016.0115

References

[1] 杨智春, 夏巍. 壁板颤振的分析模型、数值求解方法和研究进展[J]. 力学进展, 2010, 40(1):81-98. YANG Z C, XIA W. Analytical models, numerical solutions and advances in the study of panel flutter[J]. Advances in Mechanics, 2010, 40(1):81-98(in Chinese).
[2] THIODOR H B, PAUL H. High speed research program sonic fatigue summary report:NASA/CR-2005-213742[R]. Washington, D.C.:NASA, 2005.
[3] MEI C. Large deflection multimode response of clamped rectangular panels to acoustic excitation:AFWAL-TR-83-3121[R].[s.l.]:AF Wright Aeronautical Laboratories, 1983.
[4] ABDEL-MOTAGALY K, DUAN B, MEI C. Nonlinear response of composite panels under combined acoustic excitation and aerodynamic pressure[J]. AIAA Journal, 2000, 38(9):1534-1542.
[5] DHAINAUT J M, GOU X, MEI C, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment[J]. Journal of Aircraft, 2004, 40(4):683-691.
[6] DHAINAUT J M, CHENG G F, MEI C. Response of plats under uniform random loads unsynchronized in time:AIAA-2006-1927[R]. Reston:AIAA, 2006.
[7] DHAINAUT J M. Nonlinear finite element modal formulation for panel flutter with thermal effects and acoustic excitation:AIAA-2012-1789[R]. Reston:AIAA, 2012.
[8] MILLER B A, MCNAMARA J J, SPOTTSWOOD S M, et al. The impact of flow induced loads on snap-through behavior of acoustically excited thermally buckled panels[J]. Journal of Sound and Vibration, 2011, 330(23):5736-5752.
[9] SUCHEENDRAN M M, BODONY D J, GEUBELLE P H. Coupled structural-acoustic response of a duct-mounted elastic plate with grazing flow[J]. AIAA Journal, 2014, 52(1):178-194.
[10] OSTOICH C M, BODONY D J, GEUBEUE P H. Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation[J]. Physics of Fluid, 2013, 25(11):110806.
[11] PRZEKOP A, RIZZI S A, SWEITZER K A. An investigation of high-cycle fatigue models for metallic structures exhibiting snap-through response[J]. International Journal of Fatigue, 2008, 30(9):1579-1598.
[12] MIGNOLET M P, SOIZE C. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[J]. Computer Method in Applied Mechanics and Engineering, 2008, 197(45-48):3951-3963.
[13] 夏巍. 超音速气流中受热复合材料壁板的非线性颤振特性研究[D]. 西安:西北工业大学, 2008. XIA W. Nonlinear flutter of heated composite panels in supersonic airflow[D]. Xi'an:Northwestern Polytechnical University, 2008(in Chinese).
[14] YANG C, LI G S, WAN Z Q. Aerothermal aeroelastic two-way coupling method for hypersonic curved panel flutter[J]. Science China Technological Sciences, 2012, 55(3):831-840.
[15] 李鹏, 杨翊仁, 鲁丽. 外激励作用下亚音速二维壁板的复杂响应研究[J]. 计算力学学报, 2011, 28(6):864-871. LI P, YANG Y R, LU L. Complicated response analysis of two-dimensional thin panel in subsonic flow with external excitation[J]. Chinese Journal of Computational Mechanics, 2011, 28(6):864-871(in Chinese).
[16] 沙云东, 魏静, 高志军, 等. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6):1336-1346. SHA Y D, WEI J, GAO Z J, et al. Nonlinear response characteristics of thin-walled structures under thermos-acoustic loadings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1336-1346(in Chinese).
[17] 沙云东, 郭小鹏, 廖连芳, 等. 随机声载荷作用下的复合薄壁结构Von Mises应力概率分布研究[J]. 振动与冲击, 2011, 30(1):137-141. SHA Y D, GUO X P, LIAO L F, et al. Probability distribution of Von Mises stress for complex thin-walled structures undergoing random acoustic loadings[J]. Journal of Vibration and Shock, 2011, 30(1):137-141(in Chinese).
[18] DOWELL E H. Nonlinear oscillations of a fluttering plate II[J]. AIAA Journal, 1967, 5(10):1856-1862.
[19] BLEVINS R D, BOFILIOS D, HOLEHOUSE I, et al. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure:AFRL-RB-WP-TR-2009-3139[R]. Chula Vista, CA:Goodrich Aerostructures Group, 2009.
[20] 贺尔铭, 刘峰, 胡亚琪, 等. 热声载荷下薄壁结构非线性振动响应分析及疲劳寿命预测[J]. 振动与冲击, 2013, 32(24):135-139. HE E M, LIU F, HU Y Q, et al. Nonlinear vibration response analysis and fatigue life prediction of a thin-walled structure under thermal-acoustic loading[J]. Journal of Vibration and Shock, 2013, 32(24):135-139(in Chinese).

Outlines

/