ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Forward slip compensation method for designing rolling mold cavity of compressor blade
Received date: 2016-03-01
Revised date: 2016-04-08
Online published: 2016-04-18
Supported by
National Natural Science Foundation of China (51475374,51505387); the Fundamental Research Funds for the Central Universities (3102015ZY087)
Rolling cavity is the key of rolling allowance free blade, Forward slip occurs in rolling process of high-pressure compressor blade, which cause a deviation of formed blade along rolling direction, so forward slip compensation need to be considered in designing mold cavity to improve the stacking height precision of blade. Contraposing forward slip phenomenon in rolling blade, the paper proposes and researches the optimum designing method which based on forward slip compensation for mold cavity of rolling compressor blade. Firstly, based on the analysis of cause and forward slip representation of rolling blade, the forward slip compensation mechanism is studied and a compensation model, namely, relationship between roller's central angle and stack height of section is proposed. After that, a set of sections which characterized the process mold is drawn, forward slip value of every section is calculated, and relationship between roller's central angle and stack height of section is set up. Then, based on the adjusted central angle, sector mapping algorithm in space for section curves is proposed and section curves are mapped; the rolling cavity surface through mapped section curves is reconstituted. Finally, an effective numerical calculation method is used to compare the stacking height of blade formed by forward slip compensated cavity and geometric cavity. The results show that optimized design of mold cavity can accurately control the blade forming accuracy of compressor blade in stack axis direction.
JIN Qichao , WANG Wenhu , JIANG Ruisong , ZHAO Dezhong , CUI Kang , XIONG Yifeng . Forward slip compensation method for designing rolling mold cavity of compressor blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 420173 -420173 . DOI: 10.7527/S1000-6893.2016.0117
[1] 李荣斌, 姚枚, 刘文昌, 等. 冷轧对GH4169合金组织与性能的影响[J]. 金属热处理, 2002, 27(7):12-15. LI R B, YAO M, LIU W C, et al. Effects of cold rolling on microstructure and performance of GH4169 alloy[J]. Metal Heat Treatment, 2002, 27(7):12-15(in Chinese).
[2] 乔思佳, 李深亮. 某转子叶片辊轧工艺[J]. 中国新技术新产品, 2015, 33(22):38. QIAO S J, LI S L. Roll rolling process for a rotor blade[J]. New Technology & New Products of China, 2015, 33(22):38(in Chinese).
[3] 王辉, 吴宝海, 李小强. 新一代商用航空发动机叶片的先进加工技术[J]. 航空制造技术, 2014, 20(20):26-31. WANG H, WU B H, LI X Q. Advanced machining technology of new generation commercial aero engine blade[J]. Aeronautical Manufacturing Technology, 2014, 20(20):26-31(in Chinese).
[4] 赵升吨, 赵承伟, 邵中魁, 等. 现代叶片成形工艺的探讨[J]. 机床与液压, 2012, 40(21):167-170. ZHAO S D, ZHAO C W, SHAO Z K, et al. Discussion about the modern forming process of leaves[J]. Machine Tool and Hydraulics, 2012, 40(21):167-170(in Chinese).
[5] HEDAYATI A, NAJAFIZADEH A, KERMANPUR A, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L[J]. Stainless Steel Journal of Materials Processing Technology, 2010, 210(8):1017-1022.
[6] 冯莹娟. 锻造-冷辊轧GH4169合金叶片组织性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012:16-30. FENG Y J. Study of microstructure and mechanical property of forged and cold rolling GH4169 alloy blade[D]. Harbin:Harbin Institute of Technology, 2012:16-30(in Chinese).
[7] 于建民. 叶片温辊轧成型工艺与装备研究[D]. 太原:中北大学, 2006:34-42. YU J M. The research on the technology of the warm rolling and equipment of blade[D]. Taiyuan:North University of China, 2006:34-42(in Chinese).
[8] 裴润奇, 张治民, 李保成. 叶片专用辊轧机轧辊的强度校核[J]. 特种成形, 2006, 2(3):73-75. PEI R Q, ZHANG Z M, LI B C. Checking the roller strength in rolling machine for vane[J]. Special Forming, 2006, 2(3):73-75(in Chinese).
[9] 于建民, 张治民. 叶片辊轧工艺的计算机模拟[J]. 锻压装备与制造技术, 2005, 40(3):833-836. YU J M, ZHANG Z M. The computer simulation of blade rolling technology[J]. China Metal Forming Equipment & Manufacturing Technology, 2005, 40(3):833-836(in Chinese).
[10] 刘慧, 王国栋, 刘相华. 轧制工艺参数对钢板平面形状的影响[J]. 东北大学学报(自然科学版), 2004, 25(7):674-677. LIU H, WANG G D, LIU X H. Effect of rolling parameters on plane shape of plates[J]. Journal of Northeastern University (Natural Science), 2004, 25(7):674-677(in Chinese).
[11] 董连超. 变厚度轧制金属塑性流动规律[D]. 秦皇岛:燕山大学, 2013:20-30. DONG L C. Metal flow law of longitudinally profiled flat steel[D]. Qinhuangdao:Yanshan University, 2013:20-30(in Chinese).
[12] 周道. 航空叶片冷辊轧过程仿真分析[D]. 沈阳:东北大学, 2010:41-69. ZHOU D. Simulation and analysis of blade cold roll forming process[D]. Shenyang:Northeastern University, 2010:41-69(in Chinese).
[13] MAMALIS A G, JOHNSON W, HAWKYARD J B. Pressure distribution, roll force and torque in cold ring rolling[J]. International Journal of Mechanical Sciences, 1976, 4(18):196-209.
[14] SEDIGHI M, MAHMOODI M. An approach to simulate cold roll-forging of turbo-engine thin compressor blade[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2009, 81(3):191-198.
[15] 陈雅, 周红梅. 冷轧成形整流叶片毛边问题分析及改进方案[J]. 模具技术, 2014, 5(12):23-30. CHEN Y, ZHOU H M. Analysis and improvement plan for the straightener blade burrs in cold rolling process[J]. Mould Technology, 2014, 5(12):23-30(in Chinese).
[16] 李文平, 边文德, 聂绍珉, 等. 补偿回弹的冲压件模具设计方法[J]. 锻压技术, 2007, 32(5):86-91. LI W P, BIAN W D, NIE S M, et al. Die design method for sheet metal stamping work-piece with compensating spring-back[J]. Forging & Stamping Technology, 2007, 32(5):86-91(in Chinese).
[17] 陈洪月, 孟辉, 毛君, 等. 模具安装误差对叶片辊轧精度的影响[J]. 热加工工艺, 2014, 43(5):120-125. CHEN H Y, MENG H, MAO J, et al. Influence of die installation error on blade rolling accuracy[J]. Hot Working Technology, 2014, 43(5):120-125(in Chinese).
[18] 裴景东. 压气机叶片辊轧模具型腔自动化建模技术研究[D]. 西安:西北工业大学, 2014:33-60. PEI J D. Research on automatic modeling technology about the cavity of mould of compressor roll-forming blade[D]. Xi'an:Northwestern Polytechnical University, 2014:33-60(in Chinese).
[19] 王渊彬, 汪文虎, 张艳, 等. 压气机叶片辊轧模具型腔快速建模技术[J]. 航空学报, 2014, 35(11):3190-3198. WANG Y B, WANG W H, ZHAN Y, et al. Rapid modeling technology of rolling mold cavity of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3190-3198(in Chinese).
[20] 赵志业. 金属塑性变形与辊轧理论[M]. 北京:冶金工业出版社, 2012:264-269. ZHAO Z Y. Metal plastic deformation and rolling theory[M]. Beijing:Metallurgical Industry Press, 2012:264-269(in Chinese).
[21] 靳淇超, 汪文虎, 蒋睿嵩, 等. 一种改进的压气机叶片辊轧成形前滑计算模型[J]. 航空学报, 2016, 37(10):3178-3185. JIN Q C, WANG W H, JIANG R S, et al. An improved calculation model for forward slip in rolling compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3178-3185(in Chinese).
[22] LU B, OU H, ARMSTRONG C G, et al. 3D die shape optimization for net-shape forging of aero-foil blades[J]. Materials and Design, 2009, 30(7):2490-2500.
[23] OU H, LAN J, ARMSTRONG C G, et al. An FE simulation and optimization approach for the forging of aero-engine components[J]. Journal of Materials Processing Technology, 2004,151(1-3):208-216.
[24] SEDIGHI M, MAHMOODI M. Pressure distribution in cold rolling of turbo-engine thin compressor blades[J]. Materials and Manufacturing Processes, 2012, 27(4):401-405.
[25] 王涛, 陈国定, 巨江涛. GH4169高温合金高应变率本构关系试验研究[J]. 航空学报, 2013, 34(4):946-953. WANG T, CHEN G D, JU J T. Experimental study of constitutive relationship of super-alloy GH4169 under high strain rates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):946-953(in Chinese).
/
〈 | 〉 |