Electronics and Control

Output feedback attitude maneuver control of satellite using rotation matrix

  • HUANG Jing ,
  • LIU Gang ,
  • LIU Fucheng ,
  • LI Chuanjiang
Expand
  • 1. Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China;
    2. Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai 201109, China;
    3. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2016-01-11

  Revised date: 2016-04-06

  Online published: 2016-04-18

Supported by

National Natural Science Foundation of China (61304005)

Abstract

An output-feedback attitude maneuver control strategy in the absence of angular velocity feedback is proposed for rigid satellite system by solely and directly using unit-length vector measurements. The orientation of a rigid body is described by a rotation matrix directly, rather than by a parameterization, avoiding the undesirable singular problem and unwinding phenomenon caused by Euler angle, quaternion or the modified Rodrigues parameters (MRPs) representations of the attitude. A new orientation error of the rigid body is computed by the vector measurements and a set of desired vector measurements. By using the lead filter, the velocity-free attitude maneuver control law that ensures set-point regulation is developed. Within the Lyapunov framework, the global stability of the close-loop system is guaranteed. Numerical simulation results demonstrate the successful set-point regulation of the proposed output-feedback control strategy.

Cite this article

HUANG Jing , LIU Gang , LIU Fucheng , LI Chuanjiang . Output feedback attitude maneuver control of satellite using rotation matrix[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3774 -3782 . DOI: 10.7527/S1000-6893.2016.0114

References

[1] WIE B, BARBA P M. Quaternion feedback for spacecraft large angle maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3):360-365.
[2] JOSHI S M, KELKAR A G, WEN J T. Robust attitude stabilization of spacecraft using nonlinear quaternion feedback[J]. IEEE Transactions on Automatic Control, 1995, 40(10):1800-1803.
[3] WEN J T, KREUTZ-DELGADO K. The attitude control problem[J]. IEEE Transactions on Automatic Control, 1991, 36(10):1148-1162.
[4] TSIOTRAS P. Further passivity results for the attitude control problem[J]. IEEE Transactions on Automatic Control, 1998, 43(11):1597-1600.
[5] EGELAND O, GODHAVN J M. Passivity based adaptive attitude control of a rigid spacecraft[J]. IEEE Transactions on Automatic Control, 1994, 39(4):842-846.
[6] BHAT S P, BERNSTEIN D S. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[J]. Systems and Control Letters, 2000, 39(1):63-70.
[7] 胡庆雷, 李理. 考虑输入饱和与姿态角速度受限的航天器姿态抗退绕控制[J]. 航空学报, 2015, 36(4):1259-1266. HU Q L, LI L. Anti-unwinding attitude control of spacecraft considering input saturation and angular velocity constraint[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1259-1266(in Chinese).
[8] BULLO F, MURRAY R M. Tracking for fully actuated mechanical systems:A geometric framework[J]. Automatica, 1999, 35(1):17-34.
[9] CHATURVEDI N A, SANYAL A K, MCCLAMROCH N H. Rigid body attitude control:Using rotation matrices for continuous, singularity-free control laws[J]. IEEE Control Systems, 2011,31(3):30-51.
[10] SANYAL A, FOSBURY A, CHATURVEDI N, et al. Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1167-1178.
[11] FORBES J R. Passivity-based attitude control on the special orthogonal group of rigid-body rotations[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6):1596-1605.
[12] ZHENG Z, SONG S M. Cooperative attitude tracking control for multiple spacecraft using vector measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(13):2375-2388.
[13] LIZARRALDE F, WEN J. Attitude control without angular velocity measurement:A passivity approach[J]. IEEE Transactions on Automatic Control, 1996, 41(3):468-472.
[14] 高岱, 吕建婷, 王本利. 航天器有限时间输出反馈姿态控制[J]. 航空学报, 2012, 33(11):2074-2081. GAO D, LYU J T, WANG B L. Finite-time output feedback attitude control of spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2074-2081(in Chinese).
[15] ZOU A M, KUMAR K D, HOU Z G. Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks[J]. IEEE Transactions on Neural Networks, 2010, 21(9):1457-1471.
[16] BENZIANE L. Attitude estimation & control of autonomous aerial vehicles[D]. Versailles:Université de Versailles-Saint Quentin en Yvelines, 2015:35-54.
[17] HUGHES P C. Spacecraft attitude dynamics[M]. 2nd ed. New York:Dover Publications, Inc., 2004:93-129.
[18] MAHONY R, HAMEL T, PFLIMLIN J M. Nonlinear complementary filters on the special orthogonal group[J]. IEEE Transactions on Automatic Control, 2008, 53(5):1203-1218.
[19] CACCAVALE F, VILLANI L. Output feedback control for attitude tracking[J]. Systems & Control Letters, 1999, 38(2):91-98.
[20] KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. 3rd ed. Upper Saddle River:Prentice-Hall, 2002:111-133.

Outlines

/