Fluid Mechanics and Flight Mechanics

Effect of leading-edge serrations on boundary layer instability noise

  • CHEN Weijie ,
  • QIAO Weiyang ,
  • TONG Fan ,
  • DUAN Wenhua ,
  • LIU Tuanjie
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2016-01-13

  Revised date: 2016-03-29

  Online published: 2016-04-08

Supported by

National Natural Science Foundation of China (51276149, 51476134); State Key Laboratory of Aerodynamics Research Fund (SKLA20140201)

Abstract

In order to explore the noise reduction law of the bionics leading-edge serrations, the effect of nine leading-edge serrations on blade laminar boundary layer instability noise has been investigated experimentally at low to moderate Reynolds number (Re=(2-8)×105) and different angle of attacks. It can be concluded that leading-edge serrations can decrease and even totally suppress blade laminar boundary layer instability noise. The noise reduction effect is very sensitive to both serration amplitude and serration wavelength, and the blade with larger amplitude and smaller wavelength has better noise reduction effect, which can reach a maximum of 30 dB. The noise reduction mechanism is attributed to the stream-wise vortices induced by the leading-edge serrations, which can affect blade downstream boundary layer flow and then destroy the acoustic feed-back loop. The leading-edge serrations have no effect on the instability noise peak frequency.

Cite this article

CHEN Weijie , QIAO Weiyang , TONG Fan , DUAN Wenhua , LIU Tuanjie . Effect of leading-edge serrations on boundary layer instability noise[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3634 -3645 . DOI: 10.7527/S1000-6893.2016.0104

References

[1] PATERSON R W, VOGT P G, FINK M R, et al. Vortex noise of isolated airfoils[J]. Journal of Aircraft, 1973, 10(5):296-302.
[2] TAM C K W. Discrete tones of isolated airfoil[J]. Journal of the Acoustical Society of America, 1974, 55(6):1173-1177.
[3] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction:NASA RP-1218[R]. Washington, D.C.:NASA, 1989.
[4] ARBEY H, BATAILLE J. Noise generated by airfoil profiles placed in a uniform laminar flow[J]. Journal of Fluid Mechanics, 1983, 134:33-47.
[5] LOWSON M V, FIDDES S P, NASH E C. Laminar boundary layer aeroacoustic instabilities:AIAA-1994-0358[R]. Reston:AIAA, 1994.
[6] NASH E C, LOWSON M V, MCALPINE A. Boundary-layer instability noise on aerofoils[J]. Journal of Fluid Mechanics, 1999, 382:27-61.
[7] KINGAN M J, PEARSE J R. Laminar boundary layer instability noise produced by an aerofoil[J]. Journal of Sound and Vibration, 2009, 322(4-5):808-828.
[8] PLOGMANN B, HERRIG A, WURZ W. Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil[J]. Experiments in Fluids, 2013, 54(5):1-14.
[9] GOLUBEV V V, NGUYEN L, MANKBADI R R, et al. On flow-acoustic resonant interactions in transitional airfoils[J]. International Journal of Aeroacoustics, 2014, 13(1):1-38.
[10] DESQUESNES G, TERRACOL M, SAGAUT P. Numerical investigation of the tone noise mechanism over laminar airfoils[J]. Journal of Fluid Mechanics, 2007, 591:155-182.
[11] ARCONDOULIS E J G, DOOLAN C J, ZANDER A C, et al. A review of trailing edge noise generated by airfoils at low to moderate Reynolds number[J]. Acoustics Australia, 2010, 38(3):129-133.
[12] GEYER T, SARRADJ E, HEROLD G. Flow noise generation of cylinders with soft porous cover:AIAA-2015-3147[R]. Reston:AIAA, 2015.
[13] FINEZ A, JONDEAU E, ROGER M. Broadband noise reduction with trailing edge burshes:AIAA-2010-3980[R]. Reston:AIAA, 2010.
[14] MOREAU D, DOOLAN C J. Noise-reduction mechanism of a flat-plate serrated trailing edge[J]. AIAA Journal, 2013, 51(10):2513-2522.
[15] INASAWA A, NINOMIYA C, ASAI M. Suppression of tonal trailing-edge noise from an airfoil using a plasma actuator[J]. AIAA Journal, 2013, 51(7):1695-1702.
[16] HERSH A S, HAYDEN R E. Aerodynamic sound radiation from lifting surfaces with and without leading-edge serrations:NASA CR-114370[R]. Washington D.C.:NASA, 1971.
[17] SODERMAN P T. Aerodynamic effects of leading-edge serrations on a two-dimensional airfoil:NASA TM-X-2643[R]. Washington, D.C.:NASA, 1972.
[18] SCHWIND R G, ALLEN H J. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils-An experimental and analytical investigation:NASA CR-2344[R]. Washington, D.C.:NASA, 1973.
[19] KAZIN S B, PAAS J E, MINZNER W R. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor:NASA CR-120846[R]. Washington, D.C.:NASA, 1974.
[20] FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1):51-60.
[21] JOHARI H, HENOCH C, CUSTODIO D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11):2634-2642.
[22] HANSON K L, KELSO R M, DALLY B B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1):185-194.
[23] GUERREIRO J L E, SOUSA J M M. Low-Reynolds-number effects in passive stall control using sinusoidal leading edges[J]. AIAA Journal, 2012, 50(2):461-469.
[24] ZHANG M M, WANG G F, XU J Z. Aerodynamic control of low-Reynolds-number airfoil with leading-edge protuberances[J]. AIAA Journal, 2013, 51(8):1960-1971.
[25] BROOKS T F, MARCOLINI M A, POPE D S. Airfoil trailing-edge flow measurements[J]. AIAA Journal, 1986, 24(8):1245-1251.

Outlines

/