Fluid Mechanics and Flight Mechanics

Reconfigurable control methods of icing aircraft longitudinal motion based on robust servo LQR

  • CHEN Wei ,
  • XU Haojun ,
  • WANG Xiaolong ,
  • PEI Binbin ,
  • LI Zhe
Expand
  • College of Aeronautic and Astronautic Engineering, Air Force Engineering University, Xi'an 710038, China

Received date: 2016-01-28

  Revised date: 2016-03-16

  Online published: 2016-03-23

Supported by

National Natural Science Foundation of China (61374145, U1333131); National Basic Research Program of China (2015CB755802)

Abstract

Anti-icing and de-icing system could not ensure flight safety under icing condition all the time due to the unreliability of it, research focus on reconfigurable flight control for ice tolerance is significant. The icing effect model and longitudinal dynamic model are established. Based on robust servo linear quadratic regulator (LQR), the longitudinal flight control law is designed for icing aircraft, and then employed to study the dynamic response characteristics to different icing severity with pitch attitude hold, which validates the performance of the designed control law. Moreover, compared to the PID control, the result shows that the designed control law can improve the icing aircraft's flight performance and qualities, and track the pitch instructions excellently. In addition, the anti-jamming capability, dynamic performance and robustness are better than PID control. The proposed methodology can give a theoretical support for reconfigurable control and automatic flight control design under icing conditions.

Cite this article

CHEN Wei , XU Haojun , WANG Xiaolong , PEI Binbin , LI Zhe . Reconfigurable control methods of icing aircraft longitudinal motion based on robust servo LQR[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120129 -120129 . DOI: 10.7527/S1000-6893.2016.0087

References

[1] COLE J, STANDS W. Statistical study of aircraft icing accidents:AIAA-1991-0558[R]. Reston:AIAA, 1991.
[2] 周莉. 结冰条件下的飞机性能与安全保障方法研究[D]. 西安:空军工程大学, 2012. ZHOU L. Study on methods for assuring aircraft flight performance and safety under icing conditions[D]. Xian:Air Force Engineering University, 2012(in Chinese).
[3] 徐彦军, 林正, 孙岩, 等. 基于H控制的飞机俯仰角控制系统设计[J]. 飞行力学, 2010, 28(6):24-27. XU Y J, LIN Z, SUN Y, et al. Design of aircraft pitching angle control system based on H control[J]. Flight Dynamics, 2010, 28(6):24-27(in Chinese).
[4] 刘小雄, 章卫国, 武燕, 等. 基于直接自适应控制的重构飞控系统研究[J]. 控制与决策, 2007, 22(4):440-444. LIU X X, ZHANG W G, WU Y, et al. Direct adaptive control-based reconfiguration flight control system[J]. Control and Decision, 2007, 22(4):440-444(in Chinese).
[5] 赵海, 李振水, 薛峰, 等. 纵向控制律的LQR设计及性能检验[J]. 系统仿真学报, 2009, 22(4):348-350. ZHAO H, LI Z S, XUE F, et al. LQR design and performance examination of longitudinal control law[J]. Journal of System Simulation, 2009, 22(4):348-350(in Chinese).
[6] 张栋. 基于神经网络的歼击机自修复飞行控制律重构[D]. 南京:南京航空航天大学, 2003. ZHANG D. The reconfiguration of the self-repairing flight control law for fighters using neural networks[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2003(in Chinese).
[7] BRAGG M B, PERKINS W R, SARTER N B, et al. An interdisciplinary approach to inflight aircraft icing safety:AIAA-1998-0095[R]. Reston:AIAA, 1998.
[8] HOSSAIN K N, SHARMA V, BRAGG M B, et al. Envelope protection and control adaptation in icing encounters:AIAA-2003-0025[R]. Reston:AIAA, 2003.
[9] SHARMA V, VOULGARIS P G, FRAZZOLI E. Aircraft autopilot analysis and envelope protection for operation under icing conditions[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(3):454-465.
[10] AYKAN R, HAJIYEV C, CALISKAN F. Aircraft icing detection, identification and reconfigurable control based on Kalman filtering and Neral networks:AIAA-2005-6220[R]. Reston:AIAA, 2005.
[11] AYKAN R, HAJIYEV C, CALISKAN F. Kalman filter and Neural network-based icing identification applied to A340 aircraft dynamics[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2005, 77(1):23-33.
[12] 张智勇. 结冰飞行动力学特性与包线保护控律研究[D]. 南京:南京航空航天大学, 2006. ZHANG Z Y. Research on iced aircraft flight dynamics characteristics and envelope protection control law[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
[13] 杜亮, 洪冠新. 结冰对飞机飞行包线影响分析及控制[J]. 飞行力学, 2008, 26(2):9-12. DU L, HONG G X. Analysis and control of icing effects on aircraft flight envelope[J]. Flight Dynamics, 2008, 26(2):9-12(in Chinese).
[14] 应思斌, 艾剑良. 飞机结冰包线保护对开环飞行性能影响与仿真[J]. 系统仿真学报, 2010, 22(10):2273-2275. YING S B, AI J L. Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J]. Journal of System Simulation, 2010, 22(10):2273-2275(in Chinese).
[15] 应思斌. 飞机容冰飞行控制系统设计的理论与方法研究[D]. 上海:复旦大学, 2010. YING S B. Study on the theory and methods of aircraft icing tolerant flight control system design[D]. Shanghai:Fudan University, 2010(in Chinese).
[16] BRAGG M B, HUTCHISON T, MERRET J, et al. Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R]. Reston:AIAA, 2000.
[17] LAMPTON A. VALASEK J. Prediction of icing effects on the coupled dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):656-673.
[18] NELSON R C. Flight stability & automatic control[M]. 2nd ed. New York:The McGraw-Hill Companies, 1998:153-155.
[19] 高金源, 李陆豫, 冯亚昌. 飞机飞行品质[M]. 北京:国防工业出版社, 2003:143-145. GAO J Y, LI L Y, FENG Y C. Aircraft handling qualities[M]. Beijing:National Defense Industry Press, 2003:143-145(in Chinese).
[20] 段镇. 无人机飞行控制系统若干关键技术研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2014. DUAN Z. Research on some key technologies of flight control system of UAV[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014(in Chinese).
[21] WISE K A. Bank-to-turn missile autopilot design using loop transfer recovery[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1):145-152.
[22] Federal Aviation Administration. Part 25-airworthiness standards:transport category airplanes[S]. Washington, D.C.:Federal Register, 1990:58-60.

Outlines

/