ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Adjoint equations-based grid adaptation and error correction
Received date: 2015-11-24
Revised date: 2016-02-17
Online published: 2016-03-18
Based on the discrete adjoint optimizing theory and three-dimensional unstructured grid, a grid adaptation technology and an error correction method for objective function are built. A method to predict and correct the error of objective function using adjoint equations is presented. Then, an interpolation technology which suits for centre-based finite volume method is proposed, some methods to divide tetrahedral grids, project surface grids and optimize spatial grids are discussed, and a complete grid adaptation system which suits for finite volume method is built. Finally, the grid adaptation method is applied to the simulation of inviscid flows around NACA0012 airfoil and ONERA-M6 wing, and the error of objective function, such as the coefficient of drag and lift, is corrected. Numerical results show that the sensitive grids for objective function are detected and refined by this grid adaptation method, and the accuracy of objective function is obviously improved after grid adaptation and error correction.
CUI Pengcheng , DENG Youqi , TANG Jing , LI Bin . Adjoint equations-based grid adaptation and error correction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 2992 -3002 . DOI: 10.7527/S1000-6893.2016.0079
[1] PARK M A. Adjoint-based, three-dimensional error prediction and grid adaptation[J]. AIAA Journal, 2004, 42(9):1854-1862.
[2] BECKER R, RANNACHER R. An optimal control approach to a posteriori error estimation in finite element methods[M]. 1st ed. Cambridge:Cambridge University Press, 2001:1-102.
[3] FIDKOWSKI K J, DARMOFAL D L. Review of output-based error estimation and mesh adaptation in computational fluid dynamics[J]. AIAA Journal, 2011, 49(4):673-694.
[4] GILES M B, SÜLI E. Adjoint methods for PDEs:A posteriori error analysis and postprocessing by duality[J]. Acta Numerica, 2002, 11:145-236.
[5] PARK M A. Adjoint-based, three-dimensional error prediction and grid adaptation:AIAA-2002-3286[R]. Reston:AIAA, 2002.
[6] PARK M A. Three-dimensional turbulent RANS adjoint-based error correction:AIAA-2003-3849[R]. Reston:AIAA, 2003.
[7] PARK M A, DARMOFAL D L. Output-adaptive tetrahedral cut-cell validation for sonic boom prediction:AIAA-2008-6594[R]. Reston:AIAA, 2008.
[8] PARK M A. Low boom configuration analysis with FUN3D adjoint simulation framework:AIAA-2011-3337[R]. Reston:AIAA, 2011.
[9] PARK M A, AFTOSMIS M A, CAMPBELL R C. Summary of the 2008 NASA fundamental aeronautics program sonic boom prediction workshop:AIAA-2013-0649[R]. Reston:AIAA, 2013.
[10] OLIVER T A, DARMOFAL D L. An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations:AIAA-2007-3940[R]. Reston:AIAA, 2007.
[11] JAMES M Y, MODISETTE M, DARMOFAL D L. The importance of mesh adaptation for higher-order discretizations of aerodynamic flows:AIAA-2011-3852[R]. Reston:AIAA, 2011.
[12] YAMALEEV N K, DISKIN B, PATHAK K. Error minimization via adjoint-based anisotropic grid adaptation:AIAA-2010-4436[R]. Reston:AIAA, 2010.
[13] DISKIN B, YAMALEEV N K. Grid adaptation using adjoint-based error minimization:AIAA-2011-3986[R]. Reston:AIAA, 2011.
[14] 杨振虎, 周磊. 基于误差估计的伴随网格自适应方法[J]. 航空计算技术, 2011, 41(3):14-16. YANG Z H, ZHOU L. Output-based error estimation and grid adaptive mesh refinement[J]. Aeronautical Computing Technique, 2011, 41(3):14-16(in Chinese).
[15] 杨夏勰, 周春华. 目标函数误差估计及网格自适应处理[J]. 空气动力学学报, 2014, 32(5):688-693. YANG X X, ZHOU C H. Output-based error estimation and grid adaptation[J]. Acta Aerodynamica Sinica, 2014, 32(5):688-693(in Chinese).
[16] 张耀冰, 周乃春, 陈江涛. 小展弦比飞翼标模雷诺数影响数值模拟研究[J]. 空气动力学学报, 2015, 33(3):279-288. ZHANG Y B, ZHOU N C, CHENG J T. Numerical investigation of Reynolds number effects on a low-aspect-ratio flying-wing model[J]. Acta Aerodynamica Sinica, 2015, 33(3):279-288(in Chinese).
[17] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston:AIAA, 2002.
[18] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[19] 李彬, 邓有奇, 唐静, 等. 基于三维非结构网格的离散型伴随方法[J]. 航空学报, 2014, 35(3):674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint method for 3D on unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese).
[20] 李彬, 唐静, 邓有奇, 等. 并行的多重网格方法在离散伴随优化中的应用[J]. 航空学报, 2014, 35(8):2091-2101. LI B, TANG J, DENG Y Q, et al. Application of parallel multigrid algorithm to discrete adjoint optimization[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2091-2101(in Chinese).
[21] VENDITTI D A, DARMOFAL D L. Grid adaptation for functional outputs:application to two-dimensional inviscid flows[J]. Journal of Computational Physics, 2002, 176(1):40-69.
[22] 唐静, 郑鸣, 邓有奇, 等. 网格自适应技术在复杂外形流场模拟中的应用[J]. 计算力学学报, 2015, 32(6):752-757. TANG J, ZHENG M, DENG Y Q, et al. Grid adaptation for simulation of complicated configuration[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):752-757(in Chinese).
[23] BLAZEK J. Computational fluid dynamics:principles and applications[M]. 1st ed. Oxford:Elsevier, 2001:75-120.
[24] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for fly-wing shape optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
/
〈 | 〉 |