Electronics and Control

Block Turbo code in white Laplacian noise

  • DANG Xiaoyu ,
  • HUANG Zhun ,
  • ZHU Lujun ,
  • YU Xiangbin ,
  • CHEN Xiaomin
Expand
  • College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-11-26

  Revised date: 2016-02-21

  Online published: 2016-03-01

Supported by

National Natural Science Foundation of China (61172078, 61571224, 61571225); Fundamental Research Funds for the Central Universities (NS2014038); Foundation of Graduate Innovation Center in NUAA (kfjj20150404); Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China; Six Talent Peaks Project in Jiangsu

Abstract

Recently, most error correcting codes used in aeronautical telemetry and control communication are based on white Gaussian channel. However, there are unavoidably multiple kinds of sharp noises in aeronautical measurement and control communication, and reliability of error correcting codes with non-Gaussian channel has not been fully studied. In this paper, the decoding and performance of the block Turbo code in white Laplacian channel is analyzed. The mathematical model is established by introducing conventional Chase iterative decoding algorithm to white Laplacian channel. At the same time, three kinds of BTC decoding schemes with different detectors are proposed. Simulation results verify the availability of the model. It is found that when the bit error rate is 10-4, the optimal detector provides 3.7 dB of gain compared with the hard limit detector in white Laplacian channel, and only 0.6 dB of performance loss in contrast with the traditional detector in white Gaussian channel.

Cite this article

DANG Xiaoyu , HUANG Zhun , ZHU Lujun , YU Xiangbin , CHEN Xiaomin . Block Turbo code in white Laplacian noise[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(11) : 3494 -3501 . DOI: 10.7527/S1000-6893.2016.0050

References

[1] BLACKARD K L, RAPPAPORT T S, BOSTIAN C W. Measurements and models of radio frequency noise for indoor wireless communications[J]. IEEE Journal on Selected Areas in Communications, 1993, 11(7):991-1001.
[2] BERNSTEIN S L, BURROWS M L, EVANS J E, et al. Long-range communications at extremely low frequencies[J]. Proceedings of the IEEE, 1974, 62(3):292-312.
[3] MARKS R J, WISE G L, HALDEMAN D G, et al. Detection in Laplace noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, 14(6):866-872.
[4] NING LU, EISENSTEIN B. Detection of weak signal in non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1981, 27(6):755-771.
[5] BEAULIEU N C, YOUNG D J. Designing time-hopping ultrawide bandwidth receivers for multiuser interference environments[J]. Proceedings of the IEEE, 2009, 97(2):255-284.
[6] HU B, BEAULIEU N C. On characterizing multiple access interference in TH-UWB systems with impulsive noise models[C]//IEEE Radio and Wireless Symposium. Piscataway, NJ:IEEE Press, 2008:879-882.
[7] LI T H, SONG K S. Estimation of the parameters of sinusoidal signals in non-Gaussian noise[J]. IEEE Transactions on Signal Process, 2009, 57(1):62-72.
[8] BEAULIEU N C, JIANG S J. Data-aided and non-data-aided estimation of signal amplitude for binary data communication in Laplace noise[J]. IEEE Transactions on Communications, 2010, 58(8):2183-2187.
[9] JIANG S J, BEAULIEU N C. Precise BER computation for binary data detection in bandlimited white Laplace noise[J]. IEEE Transactions on Communications, 2011, 59(6):1570-1579.
[10] SHAO H, BEAULIEU N C. Block coding for impulsive Laplacian noise[C]//IEEE International Conference on Communications. Piscataway, NJ:IEEE Press, 2010:1-6.
[11] PYNDIAH R. Near-optimum decoding of product codes:block turbo codes[J]. IEEE Transactions on Communications, 1998, 46(8):1003-1010.
[12] 楼喜中, 毛志刚. Turbo码Log-MAP译码算法简化实现的研究[J]. 航空学报, 2005, 26(5):581-586. LOU X Z, MAO Z G. Study on the simplification of Log-MAP algorithm for turbo decoding[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5):581-586(in Chinese).
[13] FONSEKA J P, DOWLING E M, BROWN T K, et al. Constrained interleaving of turbo product codes[J]. IEEE Communications Letters, 2012, 16(9):1365-1368.
[14] PYNDIAH R, GLAVIEUX A, PICART A, et al. Near optimum decoding of product codes[C]//IEEE GLOBECOM. Piscataway, NJ:IEEE Press, 1994:339-343.
[15] SOLEYMANI M R, GAO Y Z, VILAIPORNSAWAI U. Turbo coding for satellite and wireless communications[M]. New York:Springer, 2002:104-112.
[16] LU P, LU E, CHEN T. An efficient hybrid decoder for block turbo codes[J]. IEEE Communications Letters, 2014, 18(12):2077-2080.
[17] Range Commanders Council Document 106-11. Telemetry standard[S]. New Mexico:Range Commanders Council, 2011.
[18] 樊昌信, 曹丽娜. 通信原理[M]. 6版. 北京:国防工业出版社, 2012:311-318. FAN C X, CAO L N. Principle of communication[M]. 6th ed. Beijing:National Defense Industrial Press, 2012:311-318(in Chinese).
[19] VINCENT P H. An introduction to signal detection and estimation[M]. Berlin Heidelberg:Springer-Verlag, 1988:127-139.
[20] JOHN G P, MASOUD S. 数字通信[M]. 张力军等, 译. 5版. 北京:电子工业出版社, 2011:378-384. JOHN G P, MASOUD S. Digital Communications[M]. ZHANG L J translated. 5th ed. Beijing:Electronic Industry Press, 2011:378-384(in Chinese).
[21] DAVE S, KIM J, KWATRA S C. An efficient decoding algorithm for block turbo codes[J]. IEEE Transactions on Communications, 2001, 49(1):41-46.

Outlines

/