Solid Mechanics and Vehicle Conceptual Design

Progressive damage analysis of double-strap bonding repaired laminates under buckling compression

  • DENG Jian ,
  • ZHOU Guangming ,
  • YIN Qiaozhi ,
  • XIANG Chao ,
  • CAI Deng'an
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, AVIC Nanjing Electrical and Hydraulic Engineering Research Center, Nanjing 210000, China

Received date: 2015-04-09

  Revised date: 2016-02-18

  Online published: 2016-02-24

Supported by

Funding of Jiangsu Innovation Program for Graduate Education (KYLX15_0240, KYLX_0297);the Fundamental Research Funds for the Central Universities;Priority Academic Program Development of Jiangsu Higher Education Institutions;Innovation Fund of Jiangsu Province on Industry-Academy-Research Cooperation (BY2014003-10);Nanjing Science and Technology Project (201306010);the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (0214G02)

Abstract

Failure strength and damage evolution process of double-strap bonding repaired composite laminates under buckling compression are of great significance for composite structures repair. A progressive damage model based on strain as well as cohesive zone model (CZM) is developed for bonding repaired composite laminates. Failure criteria coupled with stiffness degradation schemes of composites and adhesive is used for damage initiation and propagation in order to predict the buckling failure strength. The numerical results show the consistency between the numerical results and experimental ones, which indicates that the proposed damage model is validated. Based on this model, the damage evolution process of repaired structures under buckling compression is studied using nonlinear finite element method. The influences of patch parameters on buckling strength are also discussed. The results indicate that damage status during loading on the tensile layers of laminates is different from that on the compressive layers; buckling strength of double-strap bonding repaired composite laminates can be improved with increasing patch diameter and thickness.

Cite this article

DENG Jian , ZHOU Guangming , YIN Qiaozhi , XIANG Chao , CAI Deng'an . Progressive damage analysis of double-strap bonding repaired laminates under buckling compression[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(5) : 1526 -1535 . DOI: 10.7527/S1000-6893.2016.0046

References

[1] KATNAM K B, DA SILVA L F M, YOUNG T M. Bonded repair of composite aircraft structures:A review of scientific challenges and opportunity[J]. Progress in Aerospace Science, 2013, 61:26-42.
[2] 杜善义, 关志东. 我国大型客机先进复合材料应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese).
[3] 陈绍杰. 复合材料结构修理指南[M]. 北京:航空工业出版社, 2001:42-43. CHEN S J. Guide book on composite structures repair[M]. Beijing:Aviation Industry Press, 2001:42-43(in Chinese).
[4] SOUTIS C, DUAN D M, GOUTAS P. Compressive behavior of CFRP laminates repaired with adhesively bonded external patches[J]. Composite Structures, 1999, 45(4):289-301.
[5] HU F Z, SOUTIS C. Strength predict on of patch-repaired CFRP laminates loaded in compression[J]. Composites Science and Technology, 2000, 60(7):1103-1114.
[6] CAMPILHO R D S G, DE MOURA M F S F, RAMANTANI D A, et al. Tensile behaviour of three-dimensional carbon-epoxy adhesively single and double-strap repairs[J]. Journal of Adhesion and Adhesives, 2009, 29(6):678-686.
[7] CAMPILHO R D S G, BANEA M D, NETO J A P B. Modeling adhesive joints with cohesive zone model:Effect of cohesive law shape of the adhesive layer[J]. International Journal of Adhesive and Adhesion, 2013, 44:48-56.
[8] COOK B M. Experimentation and analysis of composite scarf joint[D]. Dayton:Air Force Institute of Technology, 2005:43-57.
[9] SUTTER D A. Three-dimensional analysis of a composite repair and the effect of overply shape variation on structural efficiency[D]. Dayton:Air Force Institute of Technology, 2007:55-65.
[10] LIU X, WANG G P. Progressive failure analysis of bonded composite repairs[J]. Composite Structures, 2007, 81(3):331-340.
[11] 林国伟, 陈普会. 胶接修补复合材料层合板失效分析的PDA-CZM方法[J]. 航空学报, 2009, 30(10):1877-1882. LIN G W, CHEN P H. PDA-CZM method for failure analysis of bonded repair of composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1877-1882(in Chinese).
[12] MANSOUR A A, 程小全, 寇长河. 单面贴补修理后层合板的拉伸性能[J]. 复合材料学报, 2005, 22(3):140-144. MANSOUR A A, CHENG X Q, KOU C H. Tensile behavior of composite laminates with one-side bonded repair[J]. Acta Materiae Compositae Sinica, 2005, 22(3):140-144(in Chinese).
[13] 王跃全, 童明波, 朱书华. 复合材料层合板胶接贴补渐进损伤分析[J]. 复合材料学报, 2011, 28(3):197-202. WANG Y Q, TONG M B, ZHU S H. Progressive damage analysis on adhesively bonding patch repair of composite laminates[J]. Acta Materiae Compositae Sinica, 2011, 28(3):197-202(in Chinese).
[14] FINN S R, HE Y F, SPRINGER G S. Compressive strength of damaged and repaired composite plates[J]. Journal of Composite Materials, 1992, 26(12):1796-1825.
[15] ZHANG H, MOTIPALLI J, LAM Y C. Experimental and finite element analysis on the post-buckling behavior of repaired composite panels[J]. Composites Part A, 1998, 30(5):1463-1471.
[16] 郭彦江, 黄俊, 蒙志军. 复合材料层合板贴补修理稳定性研究[J]. 玻璃钢/复合材料, 2013(2):13-16. GUO Y J, HUANG J, MENG Z J. Study on the stability of the composite laminates with one-side bonded repair[J]. Fiber Reinforced Plastics/Composites, 2013(2):13-16(in Chinese).
[17] 姚辽军, 赵美英, 万小朋. 基于CDM-ZCM的复合材料补片补强参数分析[J]. 航空学报, 2012, 33(4):666-671. YAO L J, ZHAO M Y, WAN X P. Parameter analysis of composite laminates with patched reinforcement based on CDM-CZM[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):666-671(in Chinese).
[18] HUANG C H, LEE Y J. Experiments and simulation of the static contact crush of composite laminated plates[J]. Composite Structures, 2003, 61(3):265-270.
[19] BATRA R C, GOPINATH G, ZHENG J Q. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates[J]. Composite Structures, 2012, 94(2):540-547.
[20] 杨光松. 损伤力学与复合材料损伤[M]. 北京:国防工业出版社, 1995:1-3. YANG G S. Damage mechanism and composite damage[M]. Beijing:National Defence Industry Press, 1995:1-3(in Chinese).
[21] CAMANHO P P, DAVILIA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials:NASA/CR-2002-211737[R]. Washington, D.C.:NASA, 2002.
[22] CAMPILHO R D S G, DE MOURA M F S F, RAMANTANI D A. Buckling strength of adhesively-bonded single and double-strap repairs on carbon-epoxy structures[J]. Composites Science and Technology, 2010, 70(2):371-379.
[23] DE MOURA M F S F, GONCALVES J P M, MARQUES A T. Modeling compression failure after low velocity impact on laminated composites using interface element[J]. Journal of Composite Materials, 1997, 31(15):1462-1479.
[24] 孙中雷, 赵美英, 姚辽军. 胶接修补复合材料层合板的渐进损伤分析方法[J]. 西北工业大学学报, 2013, 31(1):83-88. SUN Z L, ZHAO M Y, YAO L J. An effective progressive damage analysis method for failure analysis of composite scarf joint[J]. Journal of Northwestern Polytechnical University, 2013, 31(1):83-88(in Chinese).

Outlines

/