Fluid Mechanics and Flight Mechanics

A robust and automatic structured overlapping grid approach

  • WANG Wen ,
  • YAN Chao ,
  • YUAN Wu ,
  • HUANG Yu ,
  • XI Ke
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;
    3. Institute of Ordnance Industry Navigation and Control Technology, Beijing 100089, China

Received date: 2016-01-03

  Revised date: 2016-01-18

  Online published: 2016-02-22

Abstract

The grid technology is a crucial aspect of numerical simulation up till the present moment. Overlapping grid technology could relax the restriction of structure topology, thus reducing the difficulty of grid generation. Based on the structured overlapping grid, hole-cutting, donor search, and overlapping optimization are explored and improved, and surface grid assemblage is completed in this thesis. Simultaneously, a robust and automatic grid overlapping system is constructed. In order to save memory, based on the minimum hole mapping method, a composite hole-cutting method is proposed. Regarding donor search, the continuity of the search space is preserved with the virtual cell-centered grid. Moreover, the nodes of alternating digital tree (ADT) are decreased by an efficient search algorithm which excludes some non-contributing grid points. With respect to overlapping optimization, two kinds of protected hole-points are inserted and a new principle is developed to ensure the construction of two interpolated layers in paste phase, intensifying the robustness of overlapping optimization. The coordinates of near-body grids are corrected by projection method to make sure the accurate transmission of flow variables. With the enhanced algorithm, a steady DLR-F6 wing-body flow and an unsteady wing/pylon/store separation flow are performed, and excellent agreement of computational results compared with experimental data has been achieved. The algorithm shows remarkable capability and accuracy in the simulation of steady or unsteady multiple bodies flow and provides great application value for engineering.

Cite this article

WANG Wen , YAN Chao , YUAN Wu , HUANG Yu , XI Ke . A robust and automatic structured overlapping grid approach[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 2980 -2991 . DOI: 10.7527/S1000-6893.2016.0034

References

[1] THOMAS H P, ANTHONY J S. High-lift OVERFLOW analysis of the DLR-F11 wind tunnel model:AIAA-2014-2697[R]. Reston:AIAA, 2014.
[2] MENDENHALL M R, LESIEUTRE D J, CARUSO S C, et al. Aerodynamic design of pegasustm, concept to flight with CFD:AGARD CP 43[R]. Paris:AGARD, 1980.
[3] LIEVER P A, HABCHI S D. Separation analysis of launch vehicle crew escape systems:AIAA-2004-4726[R]. Reston:AIAA, 2004.
[4] WOODEN P A, BRYAN W, JUBARAJ S B. Calibrating CFD predictions for use in multiple store separation analysis:AIAA-1998-0754[R]. Reston:AIAA, 1998.
[5] KIM J W, PARK S H, YU Y H. Euler and Navier-Stokes simulations of helicopter rotor blade in forward flight using an overlapped grid solver:AIAA-2009-4268[R]. Reston:AIAA, 2009.
[6] BENEK J A, STEGER J L, DOUGHERTY F C. A flexible grid embedding technique with applications to the Euler equations:AIAA-1983-1944[R]. Reston:AIAA, 1983.
[7] ROGERS S E, SUHS N E, DIETZ W E. PEGASUS 5:An automated preprocessor for overset-grid computational fluid dynamics[J]. AIAA Journal, 2003, 41(6):1037-1045.
[8] WILLIAM M C. The overgrid interface for computational simulations on overset grids:AIAA-2002-3188[R]. Reston:AIAA, 2002.
[9] NOACK R W. SUGGAR:A general capability for moving body overset grid assembly:AIAA-2005-5117[R]. Reston:AIAA, 2005.
[10] CHEN S Y, CHEN Y C, XIA Z H, et al. Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack[J]. Sci China-Phys Mech Astron, 2013, 56(2):270-276.
[11] ZHAO M, CAO Y H. Numerical simulation of rotor flow field based on overset grids and several spatial and temporal discretization schemes[J]. Chinese Journal of Aeronautics, 2012, 25(2):155-163.
[12] 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2):208-217. XU J, LIU Q H,CAI J S, et al. Drag prediction based on overset grids with implicit hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):208-217(in Chinese).
[13] 田书玲, 伍贻兆, 夏健. 基于非结构重叠网格的二维外挂物投放模拟[J]. 空气动力学学报, 2007, 25(2):225-249. TIAN S L, WU Y Z, XIA J. 2D store separation simulation using unstructured overlapping grid[J]. Acta Aerodynamica Sinica, 2007, 25(2):225-249(in Chinese).
[14] 田书玲, 伍贻兆, 夏健. 基于动态非结构重叠网格法的直升机前飞非定常流场数值模拟研究[J]. 航空学报, 2007, 28(5):1047-1054. TIAN S L, WU Y Z, XIA J. Numerical simulation research of unsteady flow field around helicopter in forward flight on dynamic overset unstructured grids[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1047-1054(in Chinese).
[15] 田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流[J]. 航空学报, 2007, 28(1):46-51. TIAN S L, WU Y Z, XIA J. Simulation of flow past multri-body in relative motion with dynamic unstructured overset grid method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):46-51(in Chinese).
[16] SLOTNICK J, KANDULA M, BUNING P. Navier-Stokes simulation of the space shuttle launch vehicle flight transonic flowfield using a large scale Chimera grid system:AIAA-1994-1860[R]. Reston:AIAA, 1994.
[17] LABOZZETTA W F, GATZKE T D. MACGS-towards the complete grid generation system:AIAA-1994-1923[R]. Reston:AIAA, 1994.
[18] CHIU I, MEAKIN R. On automating domain connectivity for overset grids:AIAA-1995-0854[R]. Reston:AIAA, 1995.
[19] MEAKIN R. Object x-ray for cutting holes in composite overset structured grids:AIAA-2001-2537[R]. Reston:AIAA, 2001.
[20] NOACK R W. Resolution appropriate overset grid assembly for structured and unstructured grids:AIAA-2003-4123[R]. Reston:AIAA, 2003.
[21] NOACK R W. A direct cut approach for overset hole cutting:AIAA-2007-3835[R]. Reston:AIAA, 2007.
[22] LEE Y L, BAEDER J D. Implicit hole cutting-a new approach to overset grid connectivity:AIAA-2003-4128[R]. Reston:AIAA, 2003.
[23] TAYLOR S, WANG J C T. Launch-vehicle simulations using a concurrent, implicit Navier-Stokes solver:AIAA-1995-0223[R]. Reston:AIAA, 1995.
[24] 袁武, 阎超, 席柯. 洞映射方法的研究和改进[J]. 北京航空航天大学学报, 2012, 38(4):563-568. YUAN W, YAN C, XI K. Investigation and enhancement of hole mapping method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4):563-568(in Chinese).
[25] STUART E R. Improvements to the Pegasus5 overset CFD software[C]//12th Symposium on Overset Grids and Solution Technology, 2014.
[26] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17.
[27] BELK D M, MAPLE R C. Automated assembly of structured grids for moving body problems:AIAA-1995-1680[R]. Reston:AIAA, 1995.
[28] 王文, 阎超, 袁武, 等. 新型重叠网格洞面优化方法及其应用[J]. 航空学报, 2016, 37(3):826-835. WANG W, YAN C, YUAN W, et al. Novel overlapping optimization algorithm and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):826-835(in Chinese).
[29] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:18-25. YAN C. Computational fluid dynamic's methods and applications[M]. Beijing:Beihang University Press, 2006:18-25(in Chinese).
[30] KELLY R, BRODERSEN O. Summary of data from the second AIAA CFD drag prediction workshop:AIAA-2004-0555[R]. Reston:AIAA, 2004.
[31] HALL L H, PARTHASARATHY V. Validation of an automated chimera/6-DOF methodology for multiple moving body problems:AIAA-1998-0767[R]. Reston:AIAA, 1998.
[32] LEE S, PARK M, CHO K W, et al. A new automated chimera method for the prediction of store trajectory:AIAA-1999-3131[R]. Reston:AIAA, 1999.

Outlines

/