Flow Control

Forebody asymmetric vortex control with microblowing

  • YE Nan ,
  • CHENG Keming ,
  • GU Yunsong ,
  • WANG Qite ,
  • CHEN Yonghe
Expand
  • 1. College of Aeronautics and Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
    2. Hongdu Aircraft Design Institute, AVIC, Nanchang 330000, China

Received date: 2015-10-26

  Revised date: 2016-01-17

  Online published: 2016-01-30

Supported by

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

By measuring force, pressure and particle image velocimetry (PIV) technique, in view of the problem of forebody asymmetric vortex control of slender body at high angle of attack, the test study of the former is carried out by means of continuous active microblowing and double outlet zero mass synthesis of micro jet. The test results show that at different angles of attack, choosing the appropriate flow can eliminate the lateral force to zero; at double outlet of the synthetic jet microblowing control, changings the control voltage can achieve the effect of lateral force proportional control. Field test results show that leeward vortex is a non-symmetric structure when the body has a lateral force, and synthetic jet control has a certain control frequency selection characteristics. Under low frequency control, the vortex swings, and time-averaged result is symmetric distribution; under high frequency control, the position of the left and right vortex is stable and the distribution is symmetrical.

Cite this article

YE Nan , CHENG Keming , GU Yunsong , WANG Qite , CHEN Yonghe . Forebody asymmetric vortex control with microblowing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1763 -1770 . DOI: 10.7527/S1000-6893.2016.0022

References

[1] KATZ J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7):727-750.
[2] MALCOLM G N, SKOW A M. Enhanced controllability through vortex manipulation on fighter aircraft at high angles of attack:AIAA-1986-2277[R]. Reston:AIAA, 1986.
[3] ROOS F W. Microblowing for high-angle-of-attack vortex flow control on a fighter aircraft[J]. Journal of Aircraft, 2001, 38(3):454-457.
[4] BERNHARDT J E, WILLIAMS D R. Closed-loop control of forebody flow asymmetry[J]. Journal of Aircraft, 2000, 37(3):491-498.
[5] GAPCYNSKI J P, HASEL L E, COOPER M. A pressure-distribution investigation of a fineness-ratio-12.2 parabolic body of revolution (NACA RM-10) at M=1.59 and angles of attack up to 36 degrees:NACA RM-L52G14a[R]. Washington, D.C.:National Advisory Committee for Aeronautics, 1952.
[6] 顾蕴松, 明晓. 大攻角非对称流动的非定常弱扰动控制[J]. 航空学报, 2003, 24(2):102-106. GU Y S, MING X. Forebody vortices control using a fast swinging micro tip-strake at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(2):102-106(in Chinese).
[7] HUNT B L. Asymmetric vortex forces and wakes on slender bodies:AIAA-1982-1336[R]. Reston:AIAA, 1982.
[8] ERICSSION L E, BEYERS M E. Fluid mechanics considerations for successful design of forebody flow control:AIAA-2000-2320[R]. Reston:AIAA, 2000.
[9] LAMONT P J, HUNT B L. Pressure and force distributions on a sharp-nosed circular cylinder at large angles of inclination to a uniform subsonic stream[J]. Journal of Fluid Mechanics, 1976, 76(8):519-559.
[10] WARDLAW A B, MORRISON A M. Induced side forces at high angles of attack[J]. Journal of Spacecraft & Rockets, 1976, 13(10):589-593.
[11] DENG X Y, WANG Y K. Asymmetric vortices flow over slender body and its active control at high angle of attack[J]. Acta Mechanica Sinica, 2004, 20(6):567-579.
[12] WILLIAMS D. A review of forebody vortex control scenarious:AIAA-1997-1967[R]. Reston:AIAA, 1997.
[13] ROOS F W, MAGNESS C L. Bluntness and blowing for flowfield asymmetry control on slender forebodies:AIAA-1993-3409[R]. Reston:AIAA, 1993.
[14] MALCOLM G N. Forebody vortex control-A progress review:AIAA-1993-3540[R]. Reston:AIAA, 1993.
[15] BERNHARDT J E, WILLIAMS D R. Proportional control of asymmetric forebody vortices[J]. AIAA Journal, 1998, 36(11):2087-2093.
[16] DENG X Y, BO N, CHEN Y, et al. The study of Reynolds number effect on the behaviors of asymmetric vortices flow[M]. Berlin:Springer Heidelberg, 2008:178-181.
[17] 邓学蓥, 詹慧玲, 王延奎. 单孔位微吹气扰动对非对称涡流动的主动控制[C]//第六届全国实验流体力学学术会议. 北京:中国力学学会, 2004. DENG X Y, ZHAN H L, WANG Y K. The active control of single-hole microblowing perturbation to asymmetric vortices flow[C]//Proceedings of the 6th Conference on Experimental Hydromechanics of China. Beijing:Chinese Society of Theoretical and Applied Mechanics, 2004(in Chinese).
[18] 顾蕴松, 明晓. 应用PIV技术研究"零质量"射流的非定常流场特性[J]. 实验流体力学, 2005, 19(1):83-86. GU Y S, MING X, Investigation on the characteristics and structures of unsteady flow filed near the zero-mass flux jet with PIV[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):83-86(in Chinese).
[19] 明晓. 钝体尾流的特性及控制[D]. 南京:南京航空航天大学, 1988. MING X. The characteristics and control of blunt body wake[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 1988.
[20] 罗振兵, 夏智勋, 刘冰. 单膜双腔双口合成射流激励器:ZP200610031334.O[P]. 2006-08-16. LUO Z B, XIA Z X, LIU B. A synthetic jet actuator with a single diaphragm, dual cavities and exits:ZP200610031334.O[P]. 2006-08-16(in Chinese).
[21] LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuator[J]. AIAA Journal, 2006, 44(10):2418-2420.
[22] 邓雄, 夏智勋, 罗振兵, 等. 非对称出口合成双射流激励器矢量特性实验研究[J]. 航空学报, 2015, 36(2):510-517. DENG X, XIA Z X, LUO Z B, et al. Experimental investigation on the vectoring characteristic of dual synthetic jets actuator with asymmetric exits[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):510-517(in Chinese).
[23] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2):221-234. LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2):221-234(in Chinese).1967,1997.
[15] Roos FW, Magness CL. Bluntness and blowing for flowfield asymmetry control on slender forebodies. AIAA Paper 93-3409, 1993.
[16] Malcolm GN. Forebody vortex control-A progreta review. AIAA 93-3540,1993.
[17] Williams D. A review of forebody vortex control scenarios. AIAA 97-1967, 1997.
[18] Bernhardt J E, Williams D R, Bernhardt J E. Proportional Control of Asymmetric Forebody Vortices[J]. Aiaa Journal, 2012, 36.
[19] Deng X Y, Bo N, Chen Y, et al. The Study of Reynolds Number Effect on the Behaviors of Asymmetric Vortices Flow[J]. New Trends in Fluid Mechanics Research, 2007:178-181.
[20] D.F. Fishe, D.G. Murri. Effect of Actuated Forebody Strakes on the Forebody Aerodynamics of the NASA F-18 HARV[J]. NASA Technical Memorandum 4774
[21] Deng Xueying, Zhan Huiling, Wang Yankui. The active control of single-hole micro-blowing perturbation to asymmetric vortices flow. The 6th Conference on Experimental Hydromechanics of China. 'Ihiyuan, Shanxi Province. 2004. (in Chinese)
邓学蓥, 詹慧玲, 王延奎. 单孔位微吹气扰动对非对称涡流动的主动控制[C]// 第六届全国实验流体力学学术会议. 2004.
[22] L Zhenbing, Xia Zhixun, Advances in synthetic jet technology and applications in flow control [J]. Advances in Mechanics, 2005, 35(2):221-234. DOI:doi:10.3321/j.issn:1000-0992.2005.02.009. (in Chinese)
罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 02期:221-234. DOI:doi:10.3321/j.issn:1000-0992.2005.02.009.

Outlines

/