ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number
Received date: 2015-09-29
Revised date: 2015-11-20
Online published: 2016-01-28
Supported by
Science and Technology Innovation Project of Shaanxi Province (S2015TQGY0061)
Based on the research of the high altitude long endurance (HALE) solar-powered unmanned aerial vehicles (UAVs), the low Reynolds aerodynamic properties of three different propeller-wing configurations are numerically simulated by quasi-steadily solving the Reynolds averaged Navier-Stokes (RANS) equations of multiple reference frames (MRF) based on the hybrid grid technology and k-kL-ω transition model. Under the request of equal thrust, the distributed electric propulsion (DEP) slipstream effects on the FX 63-137 wing are analyzed by the comparison of the aerodynamic forces and flow characteristics between different configurations. It shows that the application of DEP is supposed to improve the lift property but to worsen the drag property heavily, which is mainly due to the increase of the flow speed and total pressure; the propeller slipstream helps expand the area of turbulent adherent flow by bringing turbulent energy into the boundary layer to sustain strong adverse pressure gradient; the appearance of vortex structures at the boundaries of slipstream regions indicates that multiple propellers' slipstream regions strongly interact with the flow field on the wing at low Reynolds numbers.
WANG Kelei , ZHU Xiaoping , ZHOU Zhou , WANG Hongbo . Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2669 -2678 . DOI: 10.7527/S1000-6893.2016.0032
[1] BOUCHER R J. Sunrise, the world's first solar-powered airplane[J]. Journal of Aircraft, 1985, 22(10): 840-846.
[2] BOUCHER R J. Histroy of solar flight: AIAA-1984-1429[R]. Reston: AIAA, 1984.
[3] MEHDI H. Conceptual design method for solar powered aircrafts: AIAA-2011-165[R]. Reston: AIAA, 2011.
[4] HORTON H P. Laminar separation bubbles in two- and three-dimensional incompressible flow[D]. London: University of London, 1968.
[5] JAN W, ULRICH S, ROLF R. Validation of the RANS-simulation of laminar separation bubbles on airfoils[J]. Aerospace Science and Technology, 2006, 10(6): 484-494.
[6] 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2) : 163-168. WANG K L, ZHOU Z, GAN W B, et al. Studying aerodynamic performance of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2) : 163-168 (in Chinese).
[7] NOLL T E, ISHMAEL S D, HENWOOD B, et al. Investigation of the Helios prototype aircraft mishap[R]. Washington, D. C.: NASA, 2004.
[8] STOLL A M, BEVIRT J, MOORE M D, et al. Drag reduction through distributed electric propulsion: AIAA-2014-2851[R]. Reston: AIAA, 2014.
[9] BORER N K, MOORE M D, TURNBULL A. Tradespace exploration of distributed propulsors for advanced on- demand mobility concepts: AIAA-2014-2850[R]. Reston: AIAA, 2014.
[10] PATTERSON M D, DASKILEWICZ M J, GERMAN B J. Conceptual design of electric aircraft with distributed propellers: multidisciplinary analysis needs and aerodynamic modeling development: AIAA-2014-0534[R]. Reston: AIAA, 2014.
[11] PATTERSON M D, GERMAN B J. Simplified aerodynamics models to predict the effects of upstream propellers on wing lift: AIAA-2015-1673[R]. Reston: AIAA, 2015.
[12] CATALANO F M. On the effects of an installed propeller slipstream on wing aerodynamic characteristics[J]. Acta Polytechnica, 2004, 44(3): 8-14.
[13] FUMIYASU M, HIROKI N. Propeller slipstream interference with wing aerodynamic characteristics of Mars airplane at low Reynolds number: AIAA-2014-0744[R]. Reston: AIAA, 2014.
[14] EHAB A E, COLIN P B. Experimental investigation of the effect of propeller slipstream on boundary layer behavior at low Reynolds number: AIAA-2000-4123[R]. Reston: AIAA, 2000: 267-276.
[15] QIN E, YANG G W, LI F W. Numerical analysis of the interference effect of propeller slipstream on aircraft flowfield[J]. Journal of Aircraft, 1998, 35(1): 84-90.
[16] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7): 1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1195-1201(in Chinese).
[17] PATTERSON M D, GERMAN B J. Wing aerodynamic analysis incorporating one-way interaction with distributed propellers: AIAA-2014-2852[R]. Reston: AIAA, 2014.
[18] NICHOLAS K B, MARK D M. Integrated propeller-wing design exploration for distributed propulsion concepts: AIAA-2015-1672[R]. Reston: AIAA, 2015.
[19] 程晓亮, 李杰. 螺旋桨滑流对机翼气动特性影响的方法研究[J]. 科学技术与工程, 2011, 11(14): 3229-3235. CHENG X L, LI J. Unsteady computational method for propeller/wing interaction[J]. Science Technology and Engineering, 2011, 11(14): 3229-3235(in Chinese).
[20] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flows[J]. Journal of Fluids Engineering, 2008, 130(1): 1-14.
[21] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920(in Chinese).
[22] 陈广强, 白鹏, 詹慧玲, 等. 高空长航时无人机螺旋桨滑流效应影响研究[J]. 飞机设计, 2014, 34(4): 1-9. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on high altitude long endurance unmanned air vehicle (HALE UAV)[J]. Aircraft Design, 2014, 34(4): 1-9(in Chinese).
[23] BRADSHAW P. Turbulence: the chief outstanding difficulty of our subject[J]. Experiments in Fluids, 1994, 16(3): 203-216.
[24] WALTERS D K, LEYLEK J H, WALTERS D K, et al. Impact of film-cooling jets on turbine aerodynamic losses[J]. Journal of Turbomachinery, 1999, 122(3): 537-545.
[25] VOLINO R J. A new model for free-stream turbulence effects on boundary layers[J]. Journal of Turbomachinery, 1997, 120(3): 613-620.
[26] GREGORY A W, BRYAN D M, BENJAMIN A B, et al. Summary of low-speed airfoil data-Vol.5[M]. Illonois: University of Illinois at Urbana-Champaign, 2012.
[27] WEIJIA F, JIE L, HAOJIE W. Numerical simulation of propeller slipstream effect on a propeller-driven unmanned aerial vehicle[J]. Procedia Engineering, 2012, 31(4): 150-155.
[28] CATALANO P, AMATO M. An evaluation of RANS turbulence modeling for aerodynamic applications[J]. Aerospace Science and Technology, 2003, 7(7): 493-509.
/
〈 | 〉 |