ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A method for effectiveness analysis of flow separation control by local actuation based on Lagrangian coherent structures
Received date: 2015-09-16
Revised date: 2015-12-30
Online published: 2016-01-25
Supported by
National Natural Science Foundation of China (11402212);the Fundamental Research Funds for the Central Universities (3102014JCQ01002)
A numerical method for the effectiveness analysis for the flow separation control by local periodic actuation is presented from the perspective of fluid transport. Finite time invariant manifold theory is used for the establishment for fluid transport analysis of unsteady flow. The attracting Lagrangian coherent structures (LCSs) and the repelling LCSs are extracted from the unsteady flow field using numerical method to describe the behaviors of fluid transport. Study on the flow separation control of local periodic excitation indicates that there exist three kinds of fluid transport mode with actuating frequency affecting the aerodynamic performance of the airfoil. In particular, as the actuation with lock-in frequency is activated, the material spike formed at the leading edge from the attracting LCSs effectively enhances the fluid exchange between mainstream and separation region, which reduces the area of separation zone, and significantly improves the airfoil lift.
KANG Wei , ZHANG Quanqi , DAI Xiangyan , LIU Lei . A method for effectiveness analysis of flow separation control by local actuation based on Lagrangian coherent structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(8) : 2490 -2497 . DOI: 10.7527/S1000-6893.2015.0363
[1] KANG W, LEI P F, ZHANG J Z, et al. Effects of local oscillation of airfoil surface on lift enhancement at low Reynolds number[J]. Journal of Fluids and Structures, 2015, 57:49-65.
[2] KANG W, ZHANG J Z, FENG P H. Aerodynamic analysis of a localized flexible airfoil at low Reynolds numbers[J]. Communications in Computational Physics, 2012, 11(4):1300-1310.
[3] KANG W, ZHANG J Z, LEI P F, et al. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number[J]. Journal of Fluids and Structures, 2014, 46:42-58.
[4] FOX R W, MCDONALD A T, PRITCHARD P J. Introduction to fluid mechanics[M]. New York:John Wiley & Sons 1985:408-423.
[5] HALLER G, YUAN G. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D:Nonlinear Phenomena, 2000, 147(3):352-370.
[6] SHADDEN S C, DABIRI J O, MARSDEN J E. Lagrangian analysis of fluid transport in empirical vortex ring flows[J]. Physics of Fluids, 2006, 18(4):047105.
[7] HALLER G. A variational theory of hyperbolic lagrangian coherent structures[J]. Physica D:Nonlinear Phenomena, 2011, 240(7):574-598.
[8] MATHUR M, HALLER G, PEACOCK T, et al. Uncovering the Lagrangian skeleton of turbulence[J]. Physical Review Letters, 2007, 98(14):144502.
[9] Beron-Vera F J, OLASCOAGA M J, GONI G J. Oceanic mesoscale eddies as revealed by Lagrangian coherent structures[J]. Geophysical Research Letters, 2008, 35(12):L12603.
[10] LIPINSKI D, CARDWELL B, MOHSENI K. A Lagrangian analysis of a two-dimensional airfoil with vortex shedding[J]. Journal of Physics A:Mathematical and Theoretical, 2008, 41(3-4):344011.
[11] 杨岸龙, 贾来兵, 尹协振. 用拉格朗日相关结构研究圆盘启动过程的流体输运[J]. 实验力学, 2012, 27(6):677-683. YANG A L, JIA L B, YIN X Z. On the fluid transport in disk starting process by lagrangian coherent structures[J]. Journal of Experimental Mechanics, 2012, 27(6):677-683(in Chinese).
[12] 雷鹏飞, 张家忠, 王琢璞, 等. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用[J]. 物理学报, 2014, 63(8):84702-084702. LEI P F,ZHANG J Z,WANG Z P, et al. Lagrangian coherent structure and transport in unsteady transient flow[J]. Acta Physica Sinica, 2014, 63(8):084702(in Chinese).
[13] SHADDEN S C, LEKIEN F, MARSDEN J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D:Nonlinear Phenomena, 2005, 212(3):271-304.
[14] GURSUL I, CLEAVER D, WANG Z. Control of low reynolds number flows by means of fluid-structure interactions[J]. Progress in Aerospace Sciences, 2014, 64:17-55.
[15] KANG W, ZHANG J Z, REN S, et al. Nonlinear galerkin method for low-dimensional modeling of fluid dynamic system using POD modes[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1):943-952.
[16] ZIENKIEWICZ O C, CODINA R. A general algorithm for compressible and incompressible-flow.1. the split, characteristic-based scheme[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8-9):869-885.
[17] ZIENKIEWICZ O C, MORGAN K, SAI BVKS, et al. A general algorithm for compressible and incompressible-flow.2. tests on the explicit form[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8-9):887-913.
[18] 康伟, 张家忠. 翼型局部弹性自激振动的增升减阻效应研究[J]. 西安交通大学学报, 2011, 45(5):94-101. KANG W, ZHANG J Z. Numerical analysis of lift enhancement and drag reduction by self-induced vibration of localized elastic airfoil[J]. Journal of Xi'an Jiaotong University, 2011, 45(5):94-101(in Chinese).
[19] BATINA J T. Unsteady euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis[J]. AIAA Journal, 1991, 29(3):327-333.
[20] BLOM F J. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6):647-668.
[21] DVTSCH H, DURST F, BECKER S, et al. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360:249-271.
[22] 康伟, 刘磊, 徐敏, 等. 低雷诺数下翼面局部振动增升机理研究[J]. 航空学报, 2015, 36(11):3557-3566. KANG W, LKU L, XU M, et al. Lift enhancement mechanism for local oscillation of airfoil surface at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3557-3566(in Chinese).
[23] VAN DOMMELEN L L, COWLEY S J. On the Lagrangian description of unsteady boundary layer separation, part 1. general theory[J]. Journal of Fluid Mechanics, 1990, 210(-1):593-626.
[24] HALLER G. Exact theory of unsteady separation for two-dimensional flows[J]. Journal of Fluid Mechanics, 2005, 512(10):257-311.
/
〈 | 〉 |