Electronics and Control

Fault-tolerant internal permanent magnet generation system used in aviation engines

  • YU Shiyi ,
  • HAO Zhenyang
Expand
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

Received date: 2015-10-12

  Revised date: 2015-12-05

  Online published: 2016-01-20

Supported by

National Natural Science Foundation of China (51307081); Natural Science Foundation of Jiangsu Province (BK2012386)

Abstract

High power density, high reliability and high output performance are required by internal power generation system in aviation. Thus, fault-tolerant permanent magnet generation system based on three-phase four-leg circuit topology was proposed. The permanent magnet fault-tolerant motor has the characteristics of large inductance. Id analysis flux-weakening control method is put forward by improving traditional flux-weakening control algorithm. It is a simple and efficient method. Id current is calculated in real time. The algorithm can realize the constant voltage generation control in a wide speed range (three times of rated speed) by calculating the given flux-weakening current at real-time. Based on the characteristics of magnet isolation, the fault tolerant control of one-phase fault including open-circuit and short-circuit is proposed. Combining with space vector pulse width modulation (SVPWM) algorithm, it means to keep the magnetic fields generated by stator current as circular rotating fields. MATLAB simulation results verify the correctness of the Id analysis method for the flux-weakening control and fault tolerant control. Finally, a 7.5 kW fault-tolerant permanent magnet motor and its control system were tested. The experimental results also validate the Id analysis method for flux-weakening and the fault tolerant control method, which lays the foundation for the follow-up system performance test.

Cite this article

YU Shiyi , HAO Zhenyang . Fault-tolerant internal permanent magnet generation system used in aviation engines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2775 -2787 . DOI: 10.7527/S1000-6893.2016.0025

References

[1] 吴志琨,李军,时瑞军. 多电航空发动机研究现况及关键技术[J]. 航空工程进展,2012(4):463-467. WU Z K, LI J, SHI R J. Research status and key technology of multi-electric aero-engine[J]. Status of Aeronautical Engineering. 2012(4): 463-467(in Chinese).
[2] KAMPKER A, BURGGRAÄF P, NEE C, et al. Integrated product and process development for electric engine production[C]//18th Conference on Electrical Power Distribution Networks (EPDC), 2013: 1-5.
[3] 方昌德, 马春燕. 航空发动机的发展历程[M]. 北京: 航空工业出版社, 2007: 50-51. FANG C D, MA C Y. Development of aviation engine [M]. Beijing: Aeronautical Industry Press, 2007: 50-51 (in Chinese).
[4] CAVAGNINO A, LI Z, TENCONI A, et al. Integrated generator for more electric engine: Design and testing of a scaled-size prototype [J]. IEEE Transactions on Industry Applications, 2013, 49(5): 2034-2043.
[5] 李开省, 王宏霞. 多电飞机技术及其标准体系探讨[J]. 航空标准化与质量, 2007(6): 10-14. LI K S, WANG H X. Study on the technology and standard system of more-electric aircraft [J]. Aeronautic Standardization and Quality, 2007(6): 10-14(in Chinese).
[6] 齐蓉, 林辉, 周素莹. 多电飞机电气系统关键技术研究[J]. 航空计算技术, 2004, 34(1): 97-101. QI R, LIN H, ZHOU S Y. Research on the key technology of more electric aircraft electrical system [J]. Aeronautical Computing Technology, 2004, 34(1): 97-101(in Chinese).
[7] 严仰光, 秦海鸿, 龚春英, 等. 多电飞机与电力电子[J]. 南京航空航天大学学报, 2014, 46(1): 11-18. YAN Y G, QIN H H, GONG C Y, et al. More electric aircraft and power electronics [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(1): 11-18(in Chinese).
[8] FEEHALLY, THOMAS. Electro-mechanical interaction in gas turbine-generator systems for more-electric aircraft[D]. Manchester: University of Manchester, 2012: 2-3.
[9] 戴卫力. 飞机无刷直流起动/发电系统的研究[D]. 南京:南京航空航天大学, 2008: 13-15. DAI W L. Research on brushless DC starter-generator system for aircraft engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 13-15(in Chinese).
[10] FRIEDRICH G, GIRARDIN A. Integrated starter generator[J]. IEEE Industry Applications Magazine, 2009, 15(4): 26-34.
[11] JEAN-PHILIPPE B, FRANCOIS B, MARIO M. Electrical rotating machines and power electronics for new aircraft equipment systems [C]//25th Congress of the International Council of the Aeronautical Sciences, 2006: 1-9.
[12] MECROW B C, JACK A G, HAYLOCK J A. Fault-tolerant permanent magnet machine drives[J]. Electrical Machines and Drives, 1996, 143(6): 437-442.
[13] SUN Z, EDE J D, WANG J, et al. Experimental testing of a 250 kW fault-tolerant permanent magnet power generation system for large civil aero engines[C]//5th International Energy Conversion, 2007: 25-27.
[14] 郝振洋, 胡育文. 电力作动器用高可靠性永磁容错电机控制系统的设计及其试验分析[J].航空学报, 2013, 34(1): 141-152. HAO Z Y, HU Y W. Design and experimental analysis on the control system of high reliability fault tolerant permanent magnet motor used in electric actuator[J]. Acta Aeronoutica et Astronautica Sinica. 2013, 34(1): 141-152(in Chinese).
[15] 郝振洋,胡育文,黄文新.电力作动器中永磁容错电机的电感和谐波分析[J]. 航空学报, 2009, 30(6): 1063-1069. HAO Z Y, HU Y W, HUANG W X. Analysis of inductance and harmonics of fault tolerant permanent magnet machine in electro-mechanical actuators[J]. Acta Aeronoutica et Astronautica Sinica, 2009, 30(6): 1063-1069(in Chinese).
[16] PAPAOIKONOMOU D, VAN D G M, POLINDER H. Comparison between induction and PM machine for high speed starter-generator applications[C]// 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), 2014: 1-6.
[17] 王艾萌. 内置式永磁同步电动机的优化设计及弱磁控制研究[D]. 保定:华北电力大学, 2010: 12-15. WANG A M. Optimal IPM machine design and flux-weakening control[D]. Baoding: North China Electric Power University, 2010: 12-15(in Chinese).
[18] 盛义发, 喻寿益, 桂卫华, 等. 轨道车辆用永磁同步电机系统弱磁控制策略[J]. 中国电机工程学报, 2010(9): 74-79. SHENG Y F, YU S Y, GUI W H, et al. Field weakening operation control strategies of permanent magnet synchronous motor for railway vehicles[J]. Proceedings of the CSEE, 2010(9): 74-79(in Chinese).
[19] SUN Z G, WANG J B, JEWELL G W, et al. Enhanced optimal torque control of fault-tolerant PM machine under flux weakening operation[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 344-353.
[20] ZHAO W X, CHENG M, HUA W, et al. Back-EMF harmonic analysis and fault-tolerant control of flux-switching permanent-magnet machine with redundancy[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1926-1935.
[21] 胡育文, 黄文新, 张兰红, 等. 异步电机直接转矩控制系统[M]. 北京: 机械工业出版社, 2012: 100-103. HU Y W, HUANG W X, ZHANG L H, et al. Direct torque control system for induction motor[M]. Beijing: Mechanical Industry Press, 2012:100-103(in Chinese).
[22] 余文涛, 胡育文, 郝振洋, 等.永磁容错电机最优转矩控制策略实验[J].航空学报, 2010, 31(8): 1622-1628. YU W T, HU Y W, HAO Z Y, et al. Experiment of optimal torque control strategy for fault tolerant permanent magnet motor[J]. Acta Aeronoutica et Astronautica Sinica, 2010, 31(8): 1622-1628(in Chinese).
[23] 穆晓敬, 郝振洋. 基于三相四桥臂逆变器的永磁容错电机控制系统[J]. 电源学报, 2014, 42(4): 15-22. MU X J, HAO Z Y.Fault tolerant permanent magnet motor control system based on three-phase four-leg inverter[J].Journal of Power Supply, 2014, 42(4): 15-22(in Chinese).

Outlines

/