Solid Mechanics and Vehicle Conceptual Design

Component mode synthesis method based on hybrid coordinates for structure with localised nonlinearities

  • WANG Tao ,
  • HE Huan ,
  • CHEN Guoping
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Institute of Vibration Engineering Research, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-09-09

  Revised date: 2015-12-28

  Online published: 2016-01-19

Supported by

National Natural Science Foundation of China (11472132); the Fundamental Research Funds for Central Universities (NS2014002); Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

Abstract

The calculation efficiency of nonlinear dynamic system has become increasingly important in the structural dynamics field. A hybrid coordinates component mode synthesis method is proposed in this paper for the structure with localised nonlinearities. According to its feature, generally, the system is divided into the linear component and nonlinear component. The equations of the linear component can be transformed into the modal coordinates by its linear vibration modes. In order to improve the accuracy, the residual flexibility attachment matrix of the system is introduced. And by constructing the weighted-orthogonal vector sets which have weighted-orthogonal relationship with the lower retained modes, the residual flexibility attachment matrix is obtained without using inverse of the stiffness matrix. The equations of the nonlinear component are kept as their original form. The synthesis equations which are expressed by hybrid coordinates are derived in terms of compatibility conditions at the interface. Finally, applications of the proposed methods to the numerical examples demonstrate that the present method is computationally effective.

Cite this article

WANG Tao , HE Huan , CHEN Guoping . Component mode synthesis method based on hybrid coordinates for structure with localised nonlinearities[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2757 -2765 . DOI: 10.7527/S1000-6893.2015.0360

References

[1] 董威利, 刘莉, 周思达. 含局部非线性的月球探测器软着陆动力学模型降阶分析[J]. 航空学报, 2014, 35(5): 1319-1328. DONG W L, LIU L, ZHOU S D. Model reduction analysis of soft landing dynamics for lunar lander with local nonlinearities[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1319-1328 (in Chinese).
[2] HURTY W C. Dynamic analysis of structural systems using component modes[J]. AIAA Journal, 1965, 3(4): 678-785.
[3] GOLDMAN R L. Vibration analysis by dynamic partitioning[J]. AIAA Journal, 1969, 7(6): 1152-1154.
[4] MACNEAL R H. A hybrid method of component mode synthesis[J]. Computers and Structures, 1971, 1(4): 581-601.
[5] RUBIN S. Improved component-mode representation for structural dynamic analysis[J]. AIAA Journal, 1975, 13(8): 995-1006.
[6] QIU J B, YING Z G, WILLIAMS F W. Exact modal synthesis techniques using residual constraint modes[J]. International Journal for Numerical Methods in Engineering, 1997, 40(13): 2475-2492.
[7] BENFIELD W A, HRUDE R F. Vibration analysis of structures by component mode substitution[J]. AIAA Journal, 1971, 9(7): 1255-1261.
[8] HE H, WANG T, CHEN G P, et al. A real decoupled method and free interface component mode synthesis methods for generally damped systems[J]. Journal of Sound and Vibration, 2014, 333(2): 584-603.
[9] PAPADIMITRIOU C, PAPADIOTI D C. Component mode synthesis techniques for finite element model updating[J]. Computers and Structures, 2013, 126(1): 15-28.
[10] CHENTOUF S A, BOUHADDI N, LAITEM C S. Robustness analysis by a probabilistic approach for propagation of uncertainties in a component mode synthesis context[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2426-2443.
[11] MENCIK J M. Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45-46): 3051-3065.
[12] CLOUGH R W, WILSON E L. Dynamic analysis of large structural systems with local nonlinearity[J]. Computer Methods in Applied Mechanics and Engineering. 1979, 17(18): 107-129.
[13] 郝淑英, 陈予恕, 张琪昌, 等. 连结子结构在非线性动力学分析中的应用[J]. 天津大学学报, 2001, 34(3): 295-299. HAO S Y, CHEN Y S, ZHANG Q C, et al. Application of link substructure to nonlinear dynamic system analysis[J]. Journal of Tianjin University, 2001, 34(3): 295-299 (in Chinese).
[14] 华军, 许庆余, 张家忠. 挤压油膜阻尼器-滑动轴承-转子系统非线性动力特性的数值分析及实验研究[J]. 航空学报, 2001, 22(1): 42-45. HUA J, XU Q Y, ZHANG J Z. Numerical and experimental study on nonlinear dynamic behavior of the fluid film bearing-rotor system with squeeze film damper[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(1): 42-45 (in Chinese).
[15] IWATSUBO T, SHIMBO K, KAWAMURA S. Nonlinear vibration analysis of a rotor system using component mode synthesis method[J]. Archive of Applied Mechanics, 2003, 72(11-12): 843-855.
[16] 吕延军, 虞烈, 刘恒. 非线性转子-轴承系统的动力学特性及稳定性[J]. 机械强度, 2004, 26(3): 242-246. LV Y J, YU L, LIU H. Dynamic characterstics and stability of nonlinear rotor-bearing system[J]. Journal of Mechanical Strength, 2004, 26(3): 242-246 (in Chinese).
[17] VERROS G, NATSIAVAS S. Ride dynamics of nonlinear vehicle models using component mode synthesis[J]. Journal of Vibration and Acoustics, 2002, 124(3): 427-434.
[18] KAWAMURA S, NAITO T, ZAHID H M, et al. Analysis of nonlinear steady state vibration of a multi-degree-of-freedom system using component mode synthesis method[J]. Applied Acoustics, 2008, 69(7): 624-633.
[19] SAITO A, CASTANIER M, PIERRE C, et al. Efficient nonlinear vibration analysis of the forced response of rotating cracked blades[J]. Journal of Computational & Nonlinear Dynamics, 2006, 4(1): 53-63.
[20] PRAVEEN KRISHNA I R, PADMANABHAN C. Improved reduced order solution techniques for nonlinear systems with localized nonlinearities[J]. Nonlinear Dynamics, 2011, 63(4): 561-586.

Outlines

/