Fluid Mechanics and Flight Mechanics

Asymmetric flow mechanism for small aspect ratio rudders with large deflection angles on rotated missile

  • SHI Xiaojun ,
  • LI Yonghong ,
  • LIU Dawei ,
  • CHANG Lixia ,
  • YANG Ke
Expand
  • 1. High Speed Aerodynamics Institute, China Aerodynamics Reaearch and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Reaearch and Development Center, Mianyang 621000, China

Received date: 2015-11-16

  Revised date: 2015-12-01

  Online published: 2016-01-15

Abstract

In transonic wind tunnel test, regarding the problem of the asymmetric flow over a slender body of the low aspect ratio and a cutoff-delta wing tail vane in the symmetric states of small angle of attack, zero sideslip angle and large rudder angle, a series of force test, oil-flow and particle image velocimetry (PIV) test has been launched and analyzed. Based on the test data and observation of flow field, the details of the asymmetric flow, topological structure and spatial form have been studied and discussed in detail by numerical simulation. The results show that when a slender body with a low aspect ratio of control surface has large symmetric deflection angle, the wingtip vortex generated by the leading edge of control surfaces will interfere mutually for the close range between them, which would make the wingtip vortex go asymmetrically along the flow and the pressure of control surfaces maldistribution. Finally, it would lead to asymmetric flow and large yawing force over the slender body, which would affect the aerodynamic performance of a missile.

Cite this article

SHI Xiaojun , LI Yonghong , LIU Dawei , CHANG Lixia , YANG Ke . Asymmetric flow mechanism for small aspect ratio rudders with large deflection angles on rotated missile[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2690 -2698 . DOI: 10.7527/S1000-6893.2016.0007

References

[1] SKOW A M, ERICKSON G E. Modern fighter aircraft design for high angle of attack maneuvering: AGARD LS-121[R]. Paris: AGARD, 1982.
[2] POLHAMUS E C. Prediction of vortex lift characteristics by a leading-edge suction analogy[J]. Journal of Aircraft, 1971, 8(4): 193-199.
[3] DONOHOE S R, BANNINK W J, Surface reflective visualisations of shock-wave/vortex interactions above a delta wing[J]. AIAA Journal, 1997, 35(10): 1568-1573.
[4] EKATERINARIS J A, SCHIFF L B. Vortical flows over delta wings and numerical prediction of vortex breakdown: AIAA-1990-0102[R]. Reston: AIAA, 1990.
[5] VADYAK J, SCHUSTER D M. Navier-stokes simulation of burst vortex flowfields for fighter aircraft at high incidence[J]. Journal of Aircraft, 1991, 28(10): 638-645.
[6] VISWANATH P R. Some aspects of vortex asymmetry and its control on slender bodies at high angles of attack[C]//12th Asian Congress of Fluid Mechanics. 2008.
[7] ROOS F W, KEGELMAN J T. An experimental investigation of sweep-angle influence on delta-wing flows: AIAA-1990-0383[R]. Reston: AIAA, 1990.
[8] 顾蕴松,明晓. 大攻角非对称流动的非定常弱扰动控制[J].航空学报,2003,24(2):102-106. GU Y S, MING X. Forebody vortices control using a fast-swinging micro-tip-strake at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica,2003,24(2):102-106 (in Chinese).
[9] MIAU J J, KUO K T, LIU W H, et al. Flow development above 50-deg sweep delta wings with different leading-edge profiles[J]. Journal of Aircraft, 1995, 32(4): 787-794.
[10] BERNHARDT J E, WILLIAMS D R. Close-loop control of forebody flow asymmetry[J]. Journal of Aircraft, 2000, 37(3): 491-498.
[11] 阎超, 桂永丰, 黄贤禄, 等. 双三角翼前缘剖面形状对涡运动的影响[J]. 航空学报, 2001, 22(3): 193-197. YAN C, GUI Y F, HUANG X L, et al. Numerical investigation of the effects of different leading-dege profiles on the vortex flows over double-delta wings[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3): 193-197(in Chinese).
[12] 王运涛,张玉伦,王光学,等. 三角翼布局气动特性及流动机理研究[J].空气动力学学报,2013, 31 (5):554-558. WANG Y T,ZHANG Y L,WANG G X,et al. Numerical study on flow structure over a delta wing[J]. Acta Aerodynamica Sinica, 2013, 31 (5): 554-558 (in Chinese).
[13] 夏明, 李栋, 宋笔锋, 等. 利用DES 方法进行细长旋成体纵向俯仰大迎角气动特性的计算研究[J]. 科学技术与工程, 2011, 11(16): 3720-3724. XIA M, LI D, SONG B F, et al. Numerical study of unsteady aerodynamic characteristics of pitching slender body using DES[J]. Science Technology and Engineering, 2011,11(16): 3720-3724 (in Chinese).
[14] 程克明, 范召林, 尹贵鲁. 大攻角非对称性成因与对策[J]. 南京航空航天大学学报, 2002, 34( 1) : 17-21. CHENG K M, FAN Z L, YIN G L. On cause and research straegy of flow asymmetry in high-alpha flows[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(1) : 17- 21 (in Chinese).
[15] 梁益明, 姚朝晖, 何枫. 翼梢小翼若干几何参数对翼尖涡流场的影响研究[J].应用力学学报, 2012, 29(5): 548-552. LIANG Y M, YAO Z H, HE F. CFD-based study of several geometrical parameters of winglet[J]. Chinese Journal of Applied Mechanics, 2012, 29(5): 548-552 (in Chinese).
[16] 周伟江, 李峰, 汪翼云. 三角翼跨声速动态失速与涡破裂特性研究[J]. 航空学报, 1996, 17(6): 671-677. ZHOU W J, LI F, WANG Y Y. The study of transonic dynamic stall and vortex-breakdown over a delta wing[J]. Acta Aeronautica et Astronautica Sinica,1996,17(6): 671-677 (in Chinese).
[17] JOBE C E. Vortex breakdown location over 65° detal wings empiricism and experiment[J]. Aeronautical Journal, 2004, 108(1087): 475-482.
[18] 夏雪涧, 周丹杰, 麻树林. 前体边条控制技术应用[J]. 空气动力学学报, 1997, 15(1): 53-58. XIA X J, ZHOU D J, MA S L. Application of forebody strake control technology[J]. Acta Aerodynamica Sinica, 1997, 15(1): 53-58 (in Chinese).
[19] VISBAL M R. Computational and physical aspects of vortex breakdown on delta wings: AIAA-1995-0585[R]. Reston: AIAA, 1995.
[20] OBAYASHI S. Progreaa in computional unsteady aerodynamics: NASA CR 197630[R]. Washington, D.C.: NASA, 1994.
[21] HUNT B L. Asymmetric vortex forces and wakes and wakes on slender bodies: AIAA-1982-1336[R]. Reston: AIAA, 1982.
[22] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.

Outlines

/