ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Flight risk evaluation of tailplane icing based on extreme value theory
Received date: 2015-12-04
Revised date: 2015-12-30
Online published: 2016-01-13
Supported by
National Natural Science Foundation of China (61374145, 61503406); National Basic Research Program of China (2015CB755802)
A new method combining extreme value theory and Copula models is proposed to quantitatively evaluate the flight risk of tailplane icing. By establishing the complex pilot-aircraft-environment model, the situation of tailplane icing during approaching and landing is simulated. The flight extreme parameters which are proved to fit the generalized extreme value (GEV) distribution are extracted through Monte Carlo method. According to the definition of flight risk and relevant safety criterions, the flight risk determination condition is built to compute the flight risk probability of one-dimensional extreme. Then copula models are chose to describe the correlation of two-dimensional extreme parameters, and unknown parameters in different Copula models are identified. The results of goodness-of-fit test show that Joe Copula model has the highest accuracy when describing the distribution of two-dimensional extreme parameters. Thus, the flight risk probability of two-dimensional extreme parameters is calculated using Joe Copula, which solves the limitation of one-dimensional extreme parameter. The approach has certain reference values for the theories of flight safety assessment, and provides analysis and test standard for preventing flight accident in the circumstance of tailplane icing.
WANG Jianming , XU Haojun , XUE Yuan , WANG Xiaolong , LI Zhe . Flight risk evaluation of tailplane icing based on extreme value theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 3011 -3022 . DOI: 10.7527/S1000-6893.2016.0011
[1] RANAUDO R J, BATTERSON J G, REEHORST A L, et al. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft:AIAA-1989-0754[R]. Reston:AIAA,1989.
[2] RATVASKY T P, VAN ZANTE J F. NASA/FAA tailplane icing program:flight test report:NASA/TP-2000-209908[R]. Washington, D.C.:NASA, 2000.
[3] BRAGG M B. Aircraft aerodynamic effects due to large droplet ice accretions:AIAA-1996-0932[R]. Reston:AIAA, 1996.
[4] GINGRAS D R, DICKES E G, RATVASKY T P. Modeling of in-flight icing effects for pilot training:AIAA-2002-4605[R]. Reston:AIAA, 2002.
[5] HAMMOND D, QUERO M, IVEY P, et al. Analysis and experimental aspects of the impact of supercooled water droplets into thin water films:AIAA-2005-0077[R]. Reston:AIAA, 2005.
[6] BRAGG M B, HUTCHISON T, MERRET J, et al. Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R]. Reston:AIAA, 2000.
[7] AMANDA L, JOHN V. Prediction of icing effects on the coupled dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):656-673.
[8] ANSELL P J, KERHO M F. Envelope protection for contaminant-induced adverse aerodynamics on a wing using flap hinge moment measurements:AIAA-2013-2654[R]. Reston:AIAA, 2013.
[9] THOMAS P R. Demonstration of an ice contamination effects flight training device:AIAA-2006-0677[R]. Reston:AIAA, 2006.
[10] THOMAS P R, BILLY P B, LEE S. Current methods modeling and simulating icing effects on aircraft performance, stability, control[J]. Journal of Aircraft, 2010, 47(1):201-211.
[11] 徐忠达, 苏媛, 曹义华.平尾结冰对飞机纵向气动参数的影响[J].航空学报, 2013,34(7):1563-1570. XU Z D, SU Y, CAO Y H. Effects of tailplane icing on aircraft longitudinal aerodynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1563-1570(in Chinese).
[12] 史刚, 李云. Y-8飞机平尾积冰导致的飞行事故分析[J]. 飞行力学, 2011, 29(5):84-86. SHI G, LI Y. Study of flight accidents in a row caused by horizontal tail icing[J]. Flight Dynamics, 2011, 29(5):84-86(in Chinese).
[13] 潘环, 艾剑良. 飞机结冰冰形预测的建模与仿真[J]. 系统仿真学报, 2014, 26(1):221-224. PAN H, AI J L. Modeling and simulation of aircraft ice shape prediction[J]. Journal of System Simulation, 2014, 26(1):221-224(in Chinese).
[14] 周莉, 徐浩军, 杨哲. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8):1217-1221. ZHOU L, XU H J, YANG Z. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8):1217-1221(in Chinese).
[15] 陈斌, 王立文. 飞机除冰液地面除冰过程模型仿真与实验[J]. 系统仿真学报, 2012, 24(3):556-560. CHEN B, WANG L W. Model simulation and experiment of aircraft deicing process using deicing fluids on ground[J]. Journal of System Simulation, 2012, 24(3):556-560(in Chinese).
[16] GJB900-90. General program for system safety[S]. 1990.
[17] ASE. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment:SAE ARP 4761[S]. New York:SAE, 1996.
[18] DOD. Airworthiness certification criteria:MIL-HDBK-516B[S]. Washington, D.C.:DOD, 2005.
[19] DOD. Standard practice for system safety:MIL-STD-882D[S]. Washington, D.C.:DOD, 2000.
[20] STUART C. An introduction to statistical modeling of extreme value[M]. London:Springer, 2007.
[21] LAMPTON A, VALASEK J. Prediction of icing effects on the lateral/directional stability and control of light airplanes[J]. Aerospace Science and Technology, 2012:305-311.
[22] STELIOS D B, DIMITRIS A G. Estimation of value-at-risk by extreme value and conventional methods:A comparative evaluation of their predictive performance[J]. Journal of International Financial Markets, Institutions & Money, 2006, 8:209-228.
[23] JOE H. Asymptotic efficiency of the two-stage estimation method for Copula-based models[J]. Journal of Multivariate Analysis, 2005, 94(2):401-419.
[24] FREY R,MENEIL A J. Copula and credit models[J]. The Risk Metrics, 2001.
[25] NELSEN R B. An introduction to copulas[M]. New York:Springer, 1999.
/
〈 | 〉 |