ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Frequency-domain analysis of unsteady flow in multi-stage transonic compressor
Received date: 2015-10-22
Revised date: 2016-01-08
Online published: 2016-01-12
Supported by
National Natural Science Foundation of China (51306201);Natural Science Project of Sichuan Provincial Department of Education (16ZB0035);Science Research Foundation of Civil Aviation Flight University of China (J2014-38, J2015-28)
Three-dimensional unsteady solver has been developed based on three-dimensional Denton steady solver. Steady and unsteady numerical simulation have been conducted on multi-stage transonic compressor near stall point,and then frequency-domain analysis of unsteady flow field have been conducted on some typical radial sections. Frequency-domain research makes us analyze the unsteady flow field from a new perspective, and we can see some of the phenomena that are difficult to see in the time domain. The effect of the wake on axial velocity is very large, and in the developing process along the flow, with the increase of harmonic order, axial oscillation amplitude reduces, and the attenuation speed of the amplitude is also accelerating. The distribution of the 1st harmonic amplitude in the S3 plane is disturbed by the potential interference of the downstream blade row, and the maximum value point in the circumferential direction along the radial direction shaped as the blade profile. The effect of the wake on flow density, static pressure and total pressure is small, while the air static temperature and total temperature are greatly affected by the wake.
Key words: aero-engine; transonic; compressor; unsteady calculation; frequency analysis
ZHAO Jun , LIU Baojie . Frequency-domain analysis of unsteady flow in multi-stage transonic compressor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1798 -1808 . DOI: 10.7527/S1000-6893.2016.0012
[1] HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11):2005-2012.
[2] CHEN T, VASANTHAKUMAR P, HE L. Analysis of unsteady blade row interaction using nonlinear harmonic approach[J]. Journal of Propulsion and Power, 2001, 17(3):651-658.
[3] ALEXANDER P, BORIS L. Small disturbance navier-stokes method:Efficient tool for predicting unsteady air loads[J]. Journal of Aircraft, 2006, 43(1):17-29.
[4] GABRIEL S, MEHMET I,ABDULNASER I, et al. A multi-blade-row linearised analysis method for flutter and forced response predictions in turbomachinery:ASME GT2006-90789[R]. New York:ASME, 2006.
[5] MAGNUS S, ERIKSSON L E. Modeling unsteady flow effects in a 3d transonic compressor:ASME GT2005-68149[R]. New York:ASME, 2005.
[6] VILMIN S, LORRAIN E, HIRSCH C. Unsteady flow modeling across the rotor/stator interface using the nonlinear harmonic method:ASME GT2006-90210[R]. New York:ASME, 2006.
[7] 刘波, 王雷, 黄建. 非线性谐波法在双级对转压气机中的进一步校检[J]. 航空动力学报, 2013, 28(6):1333-1341. LIU B,WANG L, HUANG J. Further validation of nonlinear harmonic method in two-stage counter-rotating compressor[J]. Journal of Aerospace Power, 2013,28(6):1333-1341(in Chinese).
[8] 王英锋, 胡骏, 罗标能, 等. 上游叶片尾迹对转子叶片非定常表面压力频谱特性的影响研究[J]. 航空动力学报, 2006, 21(4):693-699. WANG Y F, HU J, LUO B N, et al. Effects of the up-stream blade wakes on the spectrum of rotor blade unsteady surface pressure[J]. Journal of Aerospace Power, 2006, 21(4):693-699(in Chinese).
[9] 魏宝锋, 金东海, 桂幸民. 离心叶轮与扩压器相互干扰数值模拟[J]. 航空学报, 2012, 33(7):1173-1180. WEI B F, JIN D H, GUI X M. Numerical simulation of impeller-diffuser interaction in centrifugal compressor[J]. Acta Aeronautica et Astronautica Sinica,2012,33(7):1173-1180(in Chinese).
[10] 赵军, 柳阳威, 刘宝杰. NASA67级非定常流场的频域分析[J]. 航空动力学报, 2007, 22(8):1371-1377. ZHAO J, LIU Y W,LIU B J. Frequency-domain analysis of NASA67 unsteady flow field[J]. Journal of Aerospace Power,2007, 22(8):1371-1377(in Chinese).
[11] DENTON J D. The use of a distributed body force to simulate viscous effects in 3D flow calculations:ASME 86-GT-144[R]. New York:ASME, 1986.
[12] 陈懋章. 风扇/压气机技术发展和对今后工作的建议[C]//21世纪航空动力发展研讨会.北京:中国航空学会动力专业分会, 2000:74-87. CHEN M Z. Fan/Compressor technology development and the suggestions on future research[C]//Symposium on the Proceedings of Aero-engine in 21st Century. Beijing:Propulsion Branch of CSAA, 2000:74-87(in Chinese).
[13] 刘宝杰, 邹正平, 严明, 等. 叶轮机计算流体动力学技术现状与发展趋势[J]. 航空学报, 2002, 23(5):394-404. LIU B J, ZOU Z P, YAN M, et al. Present status and future development of CFD in turbomachinery[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):394-404(in Chinese).
[14] 邹正平, 徐力平. 叶轮机三维非定常流动数值模拟的研究[J]. 航空学报, 2001, 22(1):10-14. ZOU Z P, XU L P.Numerical study of the 3-D unsteady flow in turbomachinery stages[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(1):10-14(in Chinese).
[15] 周燕佩, 徐力平. 计算流体动力学在航空叶轮机械中的应用[C]//21世纪航空动力发展研讨会. 北京:中国航空学会动力专业分会, 2000:100-104. ZHOU Y P, XU L P. CFD application on aero-turbomachinery[C]//Symposium on the Proceedings of Aero-engine in 21st Century. Beijing:Propulsion Branch of the CSAA, 2000:100-104(in Chinese).
[16] DENTON J D. The calculation of three-dimensional viscous flow through multistage turbomachines[J]. Journal of Turbomachinery, 1992, 114(1):18-26.
[17] JAMESON A. Time dependent calculation using multigrid with application to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston:AIAA, 1991.
[18] HE L. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines[J]. Journal of Turbomachinery, 2002, 124(5):564-571.
[19] RHIE C M. Development and application of a multistage navier-stokes solver, Part 1:Multistage modeling using body-forces and deterministic stresses:ASME paper 95-GT-342[R]. New York:ASME, 1995.
[20] RHIE C M. Development and application of a multistage navier-stokes solver, Part 2:Application to a high pressure compressor design:ASME paper 95-GT-343[R]. New York:ASME, 1995.
[21] ADAMCZYK J J. Model equation for simulation flows in multistage turbomachinery:ASME paper 85-GT-226[R]. New York:ASME, 1985.
/
〈 |
|
〉 |