ACTA AERONAUTICAET ASTRONAUTICA SINICA >
DES numerical study of shock wave/boundary layer interactions in hypersonic flows controlled by double micro-ramps
Received date: 2015-12-11
Revised date: 2016-01-11
Online published: 2016-01-12
Supported by
General Armament Department Pre-Research Foundation of China (9140C300206150C30143);Innovation Funding of Scientific Research of Jiangsu Province for Graduate Students of Universities (KYZZ15_0134)
Shock wave/boundary layer interaction (SWBLI) is a ubiquitous phenomenon encountered in hypersonic flow field, which can induce flow separation and lead to performance degradation of hypersonic inlet. Detached-eddy simulation (DES) and finite volume method have been used with the adaptive mesh refinement (AMR) technology to simulate the flow separation induced by SWBLIs in hypersonic flow at Ma∞=7.0, which have been respectively controlled by single and double micro-ramps. The control effects of micro-ramps with different streamwise installation positions on flow separation have been discussed based on the flow structure, near-wall streamwise velocity, pressure gradient and total pressure loss. The numerical results show that the reciprocal induction among the vortices pairs generated by these two micro-ramps shows the promoting effects on vortices entrainment generated by each micro-ramp, consequently the performance of double micro-ramps in eliminating the separation bubble is better than the single. As the distance between micro-ramp the trailing edge and the center of separation bubble decreases, the total pressure loss shows a trend of first decrease and then increase. Discussing the effects of both streamwise vortex intensity and its additional resistance synthetically, the optimal streamwise installation position of double micro-ramps is obtained.
DONG Xiangrui , CHEN Yaohui , DONG Gang , LIU Yixin . DES numerical study of shock wave/boundary layer interactions in hypersonic flows controlled by double micro-ramps[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1771 -1780 . DOI: 10.7527/S1000-6893.2016.0016
[1] FERRI A, ATTI D G. Experimental results with airfoils tested in the high speed tunnel at Guidonia:NACA TM 946[R]. Washington, D.C.:National Advisory Committee for Aeronautics, 1939.
[2] MACCORMACK R W. Numerical solution of the interaction of a shock wave with a laminar boundary layer[C]//Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Berlin:Springer Heidelberg, 1971:151-163.
[3] KNIGHT D, YAN H, PANARAS A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions[J]. Progress in Aerospace Sciences, 2003, 39(2-3):121-184.
[4] DONOVAN J F. Control of shock wave/turbulent boundary layer interactions using tangential injection[C]//Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1996.
[5] 段会申, 刘沛清, 何雨薇, 等. 二维翼型微吸吹气减阻控制新技术数值研究[J]. 航空学报, 2009, 30(7):1219-1226. DUAN H S, LIU P Q, HE Y W, et al. Numerical investigation of drag-reduction control by micro-suction-blowing on airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1219-1226(in Chinese).
[6] GEFROH D, LOTH E, DUTTON C, et al. Aeroelastically deflecting flaps for shock/boundary-layer interaction control[J]. Journal of Fluids and Structures, 2003, 17(7):1001-1016.
[7] CARABALLO E, WEBB N, LITTLE J, et al. Supersonic inlet flow control using plasma actuators[C]//Proceedings of the 47th Aerospace Sciences Meeting. Reston:AIAA, 2009.
[8] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[9] FORD C W P, BABINSKY H. Micro-ramp control for oblique shock wave/boundary layer interactions:AIAA-2007-4115[R]. Reston:AIAA, 2007.
[10] BABINSKY H, OGAWA H. SBLI control for wings and inlets[J]. Shock Waves, 2008, 18(2):89-96.
[11] ANDERSON B H, TINAPPLE J, SURBER L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation[C]//Proceedings of the 3rd AIAA Flow Control Conference. Reston:AIAA, 2006.
[12] LEE S, LOTH E, WANG C. LES of supersonic turbulent boundary layers with[mu] VG's[C]//Proceedings of the 25th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2007.
[13] TITCHENER N, BABIBSKY H, LOTH E. The effects of various vortex generator configurations on a normal shock wave/boundary layer interaction[C]//Proceedings of the 51st Aerospace Sciences Meeting. Reston:AIAA, 2013.
[14] SHARMA P, GHOSH S. A novel vortex generator for mitigation of shock-induced separation[C]//Proceedings of the 52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[15] YAN Y, CHEN C, LU P, et al. Study on shock wave-vortex ring interaction by the micro vortex generator controlled ramp flow with turbulent inflow[J]. Aerospace Science and Technology, 2013, 30(1):226-231.
[16] YAN Y, LIU C. Study on the ring-like vortical structure in MVG controlled supersonic ramp flow with different inflow conditions[J]. Aerospace Science and Technology, 2014, 35(1):106-115.
[17] SUN Z, SCARANO F, OUDHEUSDEN B, et al. Numerical and experimental investigation of the flow behind a supersonic micro-ramp[C]//Proceedings of the 51st Aerospace Sciences Meeting. Reston:AIAA, 2013.
[18] 张瑜, 李静美, 秦俭. 跨声速激波边界层相互作用的被动控制[J]. 力学学报, 1995, 27(5):523-535. ZHANG Y, LI J M, QIN J. Passive control of interaction between shock wave and boundary layer in transonic flow[J]. Acta Mechanica Sinica, 1995, 27(5):523-535(in Chinese).
[19] 刘刚, 刘伟, 牟斌, 等. 涡流发生器数值计算方法研究[J]. 空气动力学学报, 2007, 25(2):241-244. LIU G, LIU W, MU B, et al. CFD numerical simulation investigation of vortex generators[J]. Acta Aerodynamica Sinica, 2007, 25(2):241-244(in Chinese).
[20] 薛大文, 陈志华, 孙晓辉, 等. 微型三角楔超声速绕流特性的研究[J]. 工程力学, 2013, 30(4):455-460. XUE D W, CHEN Z H, SUN X H, et al. Investigations on the flow characteristics of supersonic flow past a micro-ramp[J]. Engineering Mechanics, 2013, 30(4):455-460(in Chinese).
[21] 薛大文, 陈志华, 孙晓辉, 等. 翼型绕流分离的微楔控制[J]. 工程力学, 2014, 31(8):217-222. XUE D W, CHEN Z H, SUN X H, et al. Micro-ramp control of the boundary separation induced by the flow past an airfoil[J]. Engineering Mechanics, 2014, 31(8):217-222(in Chinese).
[22] 褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1):11-21. CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high fift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):11-21(in Chinese).
[23] 刘学强, 伍贻兆, 程克明. 用基于M-SST模型的DES数值模拟喷流流场[J]. 力学学报, 2004, 36(4):401-406. LIU X Q, WU Y Z, CHENG K M. Computation of lateral turbulent jets using M-SST DES model[J]. Acta Mechanica Sinica, 2004, 36(4):401-406(in Chinese).
[24] CANEPA E, LENGANI D, SATTA F, et al. Boundary layer separation control on a flat plate with adverse pressure gradients using vortex generators[C]//Proceedings of ASME Turbo Expo 2006:Power for Land, Sea, and Air. New York:AMSE, 2006:1211-1220.
/
〈 | 〉 |