ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical study of DBD vortex generator and application in junction flow control
Received date: 2015-10-21
Revised date: 2016-01-05
Online published: 2016-01-11
Supported by
National Natural Science Foundation of China (11372027)
In order to explore the effects of dielectric barrier discharges (DBD) vortex generator on the horseshoe vortex, the phenomenological model is applied in the paper to the numerical simulation. The characteristics of the streamwise vortex structure and its control on the horseshoe vortex are analyzed. The results indicate that the tornado-like vortex is formed at the edge of the upstream electrode, and streamwise vortex engulfs the free shear layer and gains continuous vortices. When the induced flows on the two sides of symmetry plane point to the symmetry and the direction of the induced vortex is opposite to the horseshoe vortex, the strength of horseshoe vortex can be suppressed effectively in junction flow at the root of the cylinder. Otherwise the control effect is poor. Three factors, the viscous diffusion of the induced vortex on horseshoe vortex, and the mixing and low pressure of the induced vortex, related to the control mechanism are pointed out.
XU Xiangnan , ZHANG Hua , HU Bo . Numerical study of DBD vortex generator and application in junction flow control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1743 -1752 . DOI: 10.7527/S1000-6893.2016.0006
[1] POST M L, CORKE T C. Separation control on high angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2004, 42(11):2177-2184.
[2] ZHANG P F, LIU A B, WANG J J. Aerodynamic modification of a NACA 0012 Airfoil by trailing-edge plasma gurney flap[J]. AIAA Journal, 2009, 47(10):2467-2474.
[3] 毛枚良, 江定武, 陈亮中, 等. 受DBD等离子体控制的低速流动数值模拟方法研究[J]. 空气动力学学报, 2011, 29(2):129-134. MAO M L, JIANG D W, CHEN L Z, et al. Study of numerical simulation method for low speed flow with DBD plasma[J]. Acta Aerodynamica Sinica, 2011, 29(2):129-134(in Chinese).
[4] OPAITS D F, ROUPASSOV D V, STARIKOVSKAIA S M, et al. Plasma control f boundary layer using low-temperature non-equilibrium plasma of gas discharge[J]. AIAA Journal, 2005, 43(6):1-6.
[5] THOMAS F O, KOZLOV A, CORKE T C. Plasma actuators for cylinder flow control and noise reduction[J]. AIAA Journal, 2008, 46(8):1921-1931.
[6] KOZLOV A V, THOMAS F O. Plasma flow control of cylinders in a tandem configuration[J]. AIAA Journal, 2011, 49(10):2183-2193.
[7] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica, 2015, 36(2):381-405(in Chinese).
[8] 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6):722-734. NIE W S, CHENG Y F, CHE X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics, 2012, 42(6):722-734(in Chinese).
[9] 李应红, 吴云. 等离子体流动控制技术研究进展[J]. 空军工程大学学报:自然科学版, 2012, 13(3):1-5. LI Y H, WU Y. Progress of research on plasma flow control technology[J]. Journal of Air Force Engineering University:National Science Edition, 2012, 13(3):1-5(in Chinese).
[10] ROTH J R, SHERMAN D M, WILKINSON S P. Electrohydrodynamic flow control with a glow-discharge surface plasma[J]. AIAA Journal, 2000, 38(7):1166-1172.
[11] RIHERD M, ROY S, VISBAL M. Numerical investigation of serpentine plasma actuators for paration control at low Reynolds number:AIAA-2011-3990[R]. Reston:AIAA, 2011.
[12] RIHERD M, ROY S. Serpentine geometry plasma actuators for flow control[J]. Journal of Applied Physics, 2013, 114(8):083303-1-13.
[13] RIZZETTA D P, VISBAL M R. Numerical investigation of plasma-based control for low-Reynolds-number airfoil flows[J]. AIAA Journal, 2011, 49(2):411-425.
[14] OKITA Y, JUKES T, CHOI K S, et al. Flow reattachment over an airfoil using surface plasma actuator:AIAA-2008-4203[R]. Reston:AIAA, 2008.
[15] SCHATZMAN D M, THOMAS F O. Turbulent boundary-layer separation control with single dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2010, 48(8):1620-1634.
[16] JUKES T N, CHOI K S. Dielectric-barrier-discharge vortex generators:Characterization and optimization for flow separation control[J]. Experiments in Fluids, 2012, 52(2):329-345.
[17] JUKES T N, CHOI K S. On the formation of streamwise vortices by plasma vortex enerators[J]. Journal of Fluid Mechanics, 2013, 733:370-393.
[18] SHYY W, JAYARAMAN B, ANDERSSON A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11):6434-6443.
[19] 张攀峰, 刘爱兵, 王晋军. 基于唯象模型的等离子激励诱导流场数值模拟[J]. 北京航空航天大学学报, 2010, 36(1):52-56. ZHANG P F, LIU A B, WANG J J. Numerical simulation on flow induced by plasma actuator based on phenomenological model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):52-56(in Chinese).
[20] 吴星钢. 基于二维/三维沟槽的角区流动控制实验研究[D]. 北京:北京航空航天大学, 2014:23-49. WU X G. Experimental study on junction flow control based on two & three dimensional cavity[D]. Beijing:Beihang University, 2014:23-49(in Chinese).
[21] WEI Q D, CHEN G, DU X D. An experimental study on the structure of juncture flows[J]. Journal of Visualization, 2001, 3(4):341-348.
[22] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285(4):69-94.
[23] 夏雪湔, 邓学蓥. 工程分离流动力学[M]. 北京:北京航空航天大学出版社, 1991:13-50. XIA X J, DENG X Y. Engineering separated flow dynamics[M]. Beijing:Beihang University Press, 1991:13-50(in Chinese).
[24] DEVENPORT W J, SIMPSON R L. Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction[J]. Journal of Fluid Mechanics, 1989, 210(1):23-55.
/
〈 | 〉 |