ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode
Received date: 2015-10-19
Revised date: 2015-11-24
Online published: 2016-01-06
Supported by
National Natural Science Foundation of China (61101191,61174204,61502391); China Space Foundation (N2015KC0121)
Finite-time convergence control strategies based on adaptive non-singular fast terminal sliding mode are proposed for spacecraft attitude tracking subject to external disturbances, inertia uncertainties, control saturation and actuator faults. A finite-time fault-tolerant attitude tracking controller meeting the multi-constraints is developed by introducing a non-singular fast terminal sliding mode with finite-time convergence and singularities avoidance attributes. It is further shown that the controller is independent from inertia uncertainties and bound of external disturbances with parameter adaptations. In addition, the controller designed in this paper explicitly considers the actuator output torque saturation amplitude requirements, which makes the spacecraft complete the given operations within the saturation magnitude and without the need for on-line fault estimate. The Lyapunov stability analysis shows that the designed controller can guarantee the fast convergence of the closed-loop system and has a good fault tolerant performance on control saturation and actuator faults under the multi-constraints on external disturbances, inertia uncertainties, control saturation and actuator faults. Numerical simulation has verified the good performance of the controller in the attitude tracking control.
Key words: spacecraft; attitude tracking; actuator faults; finite-time; controller saturation
HAN Zhiguo , ZHANG Ke , LYU Meibo , GUO Xiaohong . Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 3092 -3100 . DOI: 10.7527/S1000-6893.2015.0357
[1] HU Q L, LI B, ZHANG A H. Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment[J]. Nonlinear Dynamics, 2013, 73(1):53-71.
[2] PUKDEBOON C, ZINOBER S I A, THEIN M W L. Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4):1436-1444.
[3] YEH F K. Sliding-mode adaptive attitude controller design for spacecraft with thrusters[J]. IET Control Theory and Applications, 2010, 4(7):1254-1264.
[4] JIN J, KO S, RYOO C K. Fault tolerant control for satellites with four reaction wheels[J]. Control Engineering Practice, 2008, 16(10):1250-1258.
[5] LU K F, XIA Y Q, ZHU Z, et al. Sliding mode attitude tracking of rigid spacecraft with disturbance[J]. Journal of the Franklin Institute, 2012, 349(2):413-440.
[6] XIA Y Q, ZHU Z, FU M Y, et al. Attitude tracking of rigid spacecraft with bounded disturbances[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2):647-659.
[7] ZHU Z, XIA Y Q, FU M Y. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2011, 21(6):686-702.
[8] HU Q L, HUO X, XIAO B, et al. Robust finite-time control for spacecraft attitude stabilization under actuator fault[J]. Systems and Control Engineering, 2011, 10(1):1-13.
[9] CAO L, LI X L, CHEN X Q, et al. Minimum sliding mode error feedback control for fault tolerant small satellite attitude control[J]. Advances in Space Research, 2014, 53(2):309-324.
[10] CAO L, CHEN X Q, SHENG T. Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode[J]. Advances in Space Research, 2013, 51(12):2374-2393.
[11] MA Y J, JIANG B, TAO G, et al. Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback[J]. Journal of the Franklin Institute, 2014, 351(1):296-314.
[12] 胡庆雷, 王辉, 石忠, 等. 航天器新型非奇异饱和终端滑模姿态控制[J]. 宇航学报, 2015, 36(4):430-437. HU Q L, WANG H, SHI Z, et al. Novel non-singular saturated terminal sliding mode based attitude controller for spacecraft[J]. Journal of Astronautics, 2015, 36(4):430-437(in Chinese).
[13] XIAO B, HU Q L. Fault-tolerant tracking control of spacecraft with attitude-only measurement under actuator failures[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):838-849.
[14] HU Q L, JIANG B Y. Robust saturated finite time output feedback attitude stabilization for rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1914-1929.
[15] LU K F, XIA Y Q, FU M Y. Controller design for rigid spacecraft attitude tracking with actuator saturation[J]. Information Sciences, 2013, 220:343-366.
[16] 王辉, 胡庆雷, 石忠, 等. 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015, 36(6):1933-1939. WANG H, HU Q L, SHI Z, et al. Back stepping-based finite-time fault-tolerant attitude tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1933-1939(in Chinese).
[17] SHEN Q, WANG D W. Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3):1131-1138.
[18] LU K F, XIA Y Q. Finite-time attitude stabilization for rigid spacecraft[J]. International Journal of Robust and Nonlinear Control, 2013, 25(1):32-51.
[19] TIWARI M P, JANARD S, NABI U M. Rigid spacecraft fault-tolerant control using adaptive fast terminal sliding mode[J]. Advances and Applications in Sliding Mode Control Systems, 2015, 12(3):381-406.
[20] HU Q L, HUO X, XIAO B. Reaction wheel fault tolerant control for spacecraft attitude stabilization with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2012, 23(8):1737-1752.
/
〈 | 〉 |