Electronics and Control

A 2D DOA estimation method for sparse array

  • ZENG Wenhao ,
  • ZHU Xiaohua ,
  • LI Hongtao ,
  • MA Yigeng ,
  • CHEN Cheng
Expand
  • School of Electric Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China

Received date: 2015-08-10

  Revised date: 2015-12-18

  Online published: 2015-12-28

Supported by

National Natural Science Foundation of China (61401204)

Abstract

A fixed point continuation multiple signal classification (FPC-MUSIC) algorithm is proposed in this paper for the 2D direction-of-arrival (DOA) estimation for sparse array. The sparse array is built to meet the requests of matrix completion, and then the direction-of-arrival model based on matrix completion is set up which satisfies the null space property (NSP). This algorithm could recover the sparse signals to the complete signals by taking use of fixed point continuation algorithm, and then estimate 2D DOAs. Using this algorithm, the average sidelobe level of the sparse array decreases significantly, the estimation accuracy increases while reducing the number of array element in large scale, and the angle ambiguity problem is avoided. Computer simulation shows that FPC-MUSIC algorithm can estimate the 2D DOA precisely, and the effectiveness and superiority of the algorithm are verified.

Cite this article

ZENG Wenhao , ZHU Xiaohua , LI Hongtao , MA Yigeng , CHEN Cheng . A 2D DOA estimation method for sparse array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(7) : 2269 -2275 . DOI: 10.7527/S1000-6893.2015.0346

References

[1] LEE J, SONG I, KWON H, et al. Low-complexity estimation of 2D DOA for coherently distributed sources[J]. Signal processing, 2003, 83(8):1789-1802.
[2] ZHANG T T, LU Y L, HUI H T. Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3):1215-1221.
[3] 刘章孟, 周一宇, 吴海斌. 非圆信号的贝叶斯稀疏重构阵列测向方法[J]. 航空学报, 2014, 35(3):821-827. LIU Z M, ZHOU Y Y, WU H B. Direction of arrival estimation method of non-circular signals via sparse bayesian reconstruction[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):821-827(in Chinese).
[4] 罗争, 张旻, 李鹏飞. 基于协方差矩阵高阶幂的二维DOA估计新算法[J]. 航空学报, 2012, 33(4):696-704. LUO Z, ZHANG M, LI P F. A novel 2D DOA estimation algorithm based on high-order power of covariance matrix[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):696-704(in Chinese).
[5] 潘捷, 周建江, 汪飞. 非均匀噪声稀疏均匀圆阵的二维DOA估计[J]. 航空学报, 2011, 32(3):448-456. PAN J, ZHOU J J, WANF F. 2D DOA estimation for sparse uniform circular array in presence of unknown nonuniform noise[J]. Acta Aeronautica et Astro nautica Sinica, 2011, 32(3):448-456(in Chinese).
[6] HEIDENREICH P, ZOUBIR A M, RUBSAMEN M. Joint 2D DOA estimation and phase calibration for uniform rectangular arrays[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4683-4693.
[7] CANDES E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Journal on Imaging Sciences, 2013, 6(1):199-225.
[8] RECHT B, XU W, HASSIBI B. Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization[C]//47th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2008:3065-3070.
[9] CANDÈS E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational mathematics, 2009, 9(6):717-772.
[10] ELDAR Y C, GITTA K. Compressed sensing:Theory and applications[M]. Cambridge:Cambridge University Press, 2012:1-10.
[11] DUARTE M F, BARANIUK R G. Spectral compressive sensing[J]. Applied and Computational Harmonic Analysis, 2013, 35(1):111-129.
[12] CHEN C, HE B, YUAN X. Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2012, 32(1):227-245.
[13] SCHENCK C, SINAPOV J, STOYTCHEV A. Which object comes next? Grounded order completion by a humanoid robot[J]. Cybernetics & Information Technologies, 2013, 12(3):5-16.
[14] MA S, GOLDFARB D, CHEN L. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1-2):321-353.
[15] HU Y, ZHANG D, YE J, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9):2117-2130.
[16] RECHT B. A simpler approach to matrix completion[J]. Journal of Machine Learning Research, 2011, 12(4):3413-3430.
[17] KALOGERIAS D S, PETROPULU A P. Matrix completion in colocated MIMO radar:Recoverability, bounds & theoretical guarantees[J]. IEEE Transactions on Signal Processing, 2014, 62(2):309-321.
[18] SUN S, PETROPULU A P, BAJWA W U. Target estimation in colocated MIMO radar via matrix completion[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ:IEEE Press, 2013:4144-4148.
[19] SUN S, BAJWA W U, PETROPULU A P. MIMO-MC radar:A MIMO radar approach based on matrix completion[J]. Eprint Arxiv, 2014, 51(3):1839-1852.
[20] LI B, PETROPULU A. Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ:IEEE Press, 2015:2444-2448.

Outlines

/