Fluid Mechanics and Flight Mechanics

Control of flow turbulent kinetic energy by plasma

  • WANG Bin ,
  • LI Huaxing
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-07-23

  Revised date: 2015-09-11

  Online published: 2015-12-28

Abstract

As an important dynamic quantity affecting the mean flow in the turbulent flow, the Reynolds stress greatly affects the momentum transfer in turbulent flows, and thus strongly influences the skin friction. Therefore, it plays a key role in friction drag and flow separation. The purpose of this article is to present the flow control with specially designed right-angle-shaped plasma actuator, which can emit jet at about 45° to manipulate the Reynolds stress and meanwhile to alter the reattachment location in the backward-facing step flow. In the experiment, the plused frequencies of the right-angle-shaped plasma actuator are modulated by the natural instability frequency at 0.5H (H means step height) streamwise position of the backward-facing step flow. The region from 0 to 2.5H is measured by particle image velocimetry (PIV), and the reattachment zone is also measured by PIV. The results show that when the right-angle-shaped plasma actuator is turned on, the maximum of Reynolds stress components in the region centered on the shear layer and near the shear layer are significantly increased by about 42% (Horizontal normal stress), by 75% (Vertical normal stress), and by 46% (Reynolds shear stress), and the maximum of the turbulent kinetic energy production in the region centered on the shear layer is reduced by about 35%.The reattachment location is moved upstream in the reattachment zone.

Cite this article

WANG Bin , LI Huaxing . Control of flow turbulent kinetic energy by plasma[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(12) : 3809 -3821 . DOI: 10.7527/S1000-6893.2015.0250

References

[1] Roos F W, Kegelman J. Control of coherent structures in reattaching laminar and turbulent shear layers[J]. AIAA Journal, 1986, 24(12):1956-1963.
[2] Zhang Z H, Li D. Active control of flow over backward facing step by synthetic jets, AIAA-2014-2979[R]. Reston:AIAA, 2014.
[3] Ge M W, Xu C X, Huang W X, et al. Drag reduction control based on active wall deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):653-663(in Chinese).葛铭纬,许春晓,黄伟希,等.基于壁面主动变形的湍流减阻控制研究[J].力学学报, 2012,44(4):653-663.
[4] Gao X M, Li W Y, Wang J S. Flow and heat transfer characteristics of turbulent boundary layer with control[J]. Proceedings of the CSEE, 2013, 33(14):67-74(in Chinese).高小明,李惟毅,汪健生.湍流边界层内添加控制的流动与传热特性[J].中国电机工程学报, 2013, 33(14):67-74.
[5] Liu W, Jiang N, Gu R P. Experiments of Reynolds stress manipulation during burst by blow/suction disturbance[J]. Journal of Aerospace Power, 2013, 28(8):1808-1817(in Chinese).刘薇,姜楠,谷润平.吹吸扰动控制猝发过程中雷诺应力的实验[J].航空动力学报, 2013, 28(8):1808-1817.
[6] Li W P, Wang X Q, Xie H. Phase delay of the Reynolds stress and wall pressure fluctuation in wall shear flows[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2007, 35(4):122-125(in Chinese).李万平,王小庆,谢华.湍流边界层雷诺应力和壁脉动压强相位滞后分析[J].华中科技大学学报(自然科学版), 2007, 35(4):122-125.
[7] Jiang H, Xi G. Measurements for Reynolds stresses under different inlet prewhirl in centrifugal compressor[J]. Journal of Xi'an Jiaotong University, 2012, 46(4):125-131(in Chinese).姜华,席光.不同导叶预旋角下离心压缩机径向间隙区雷诺应力的测量[J].西安交通大学学报, 2012, 46(4):125-131.
[8] Wang W, Siouris S, Qin N. Hybrid RANS/LES for active flow control[J]. Aircraft Engineering and Aerospace Technology:An International Journal,2014, 86(3):179-187.
[9] Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics,1994, 262:75-93.
[10] Crawford C H, Karniadakis G E. Reynolds stress analysis of controlled wall-bounded turbulence, AIAA-1996-2008[R]. Reston:AIAA, 1996.
[11] Toutiaei S, Semaan R C, Naughton J W. Reynolds stress and turbulence kinetic energy balances in incompressible swirling jets, AIAA-2010-0105[R]. Reston:AIAA, 2010.
[12] Pathikonda G, Christensen K T. Structure of turbulent channel flow perturbed by a wall-mounted cylindrical element[J]. AIAA Journal, 2015, 53(5):1277-1286.
[13] Sugai H. Plasma electronic engineering[M]. Zhang Haibo, Zhang Dan, translated. Beijing:Science Press, 2002:6-8(in Chinese). Sugai H.等离子体电子工程学[M].张海波,张丹,译.北京:科学出版社, 2002:6-8.
[14] Roth J R, Sherman D M, Wilkinson S P. Electrohydrodynamic flow control with a glow-discharge surface plasma[J]. AIAA Journal, 2000, 38(7):1166-1172.
[15] Post M L, Corke T C. Separation control using plasma actuators stationary and oscillating airfoils, AIAA-2004-0841[R]. Reston:AIAA, 2004.
[16] Corke T C, Post M L. Overview of plasma flow control concepts, optimization and applications, AIAA-2005-0563[R]. Reston:AIAA, 2005.
[17] Roupassov D, Zavialov I, Starikovskii A, et al. Boundary layer separation plasma control using low-temperature non-equilibrium plasma of gas discharge, AIAA-2006-0373[R]. Reston:AIAA, 2006.
[18] Patel M P, Ng T T, Vasudevan S, et al. Scaling effects of an aerodynamic plasma actuator, AIAA-2007-0635[R]. Reston:AIAA, 2007.
[19] Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge, AIAA-2008-1367[R]. Reston:AIAA, 2008.
[20] Li Y H, Liang H, Ma Q Y, et al. Experimental investigation on airfoil suction side flow separation by pluse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).李应红,梁华,马清源,等.脉冲等离子体气动激励抑制翼型吸力面流动分离的试验研究[J].航空学报, 2008, 29(6):1429-1435.
[21] Zhao G Y, Liang H, Li Y H, et al. Experiment of flow control on a low swept delta wing using pulsed nanosecond plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2125-2132(in Chinese).赵光银,梁华,李应红,等.纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验[J].航空学报, 2015, 36(7):2125-2132.
[22] Meng X S, Guo Z X, Luo S J, et al. Control of asymmetric vortices over a slender conical forebody using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):500-505(in Chinese).孟宣市,郭志鑫,罗时钧,等.细长圆锥前体非对称涡流场的等离子体控制[J].航空学报, 2010, 31(3):500-505.
[23] Wang X N, Wang W B, Huang Y, et al. Investigation of flow separation control on an airfoil using DBD plasma actuators[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):9-14(in Chinese).王勋年,王万波,黄勇,等.介质阻挡放电等离子体对翼型流动分离控制的实验研究[J].实验流体力学, 2011, 25(4):9-14.
[24] Wang W B, Huang Y, Huang Z B, et al. PIV measurement of dielectric barrier discharge plasma flow control on NACA0015 airfoil[J]. Journal of Experiments in Fluid Mechanics, 2012, 25(2):1-5(in Chinese).王万波,黄勇,黄宗波,等.介质阻挡放电等离子体对NACA0015翼型流动控制的PIV实验研究[J].实验流体力学, 2012, 25(2):1-5.
[25] Che X K, Nie W S, Hou Z Y, et al. High altitude plasma flow control simulation through ground experiment[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):441-448(in Chinese).车学科,聂万胜,侯志勇,等.地面试验模拟高空等离子体流动控制效果[J].航空学报, 2015, 36(2):441-448.
[26] Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1583-1589(in Chinese).史志伟,范本根.不同结构等离子体激励器的流场特性实验研究[J].航空学报, 2011, 32(9):1583-1589.
[27] Schjodt K, Flick R, Stephen E, et al. Use of plasma actuators to force shear layer instabilities, AIAA-2010-0436[R]. Reston:AIAA, 2010.
[28] Mudde R F, Lee D J,Fan L S. Role of coherent structures on Reynolds stresses in a 2-D Bubble column[J]. Aiche Journal, 1997, 43(4):913-926.
[29] Kostas J, Soria J, Chong M S. Particle image velocimetry measurement of a backward-facing step flow[J]. Experiment in Fluids, 2002, 33(6):838-853.
[30] Winant C, Browand F. Vortex pairing:the mechanism of turbulent mixing-layer growth at moderate Reynolds number[J]. Journal of Fluid Mechanics, 1974, 63(2):237-255.
[31] Browand F K, Weidman P D. Large scales in the developing mixing layer[J]. Journal of Fluid Mechanics, 1976, 76(1):127-144.
[32] Zhang Z S, Cui G X, Xu C X. The theory and application in large eddy simulation of turbulent flows[M]. Beijing:Tsinghua University Press, 2008:1-19(in Chinese).张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社, 2008:1-19.
[33] Piirto M, Saarenrinne P, Eloranta H, et al. Measuring turbulence energy with PIV in a backward-facing step flow[J]. Experiment in Fluids, 2003, 35(3):219-236.
[34] Sigurdson L W. The structure and control of a turbulent reattaching flow[J]. Journal of Fluid Mechanics, 1995, 298(9):139-165.
[35] Chun K B, Sung H J. Control of turbulent separated flow over a backward-facing step by local forcing[J]. Experiment in Fluids, 1996, 21(6):417-426.
[36] Bhattacharjee S, Scheelke B, Troutt T R. Modification of vortex interactions in a reattaching separated flow[J]. AIAA Journal, 1986, 24(4):623-629.

Outlines

/