Electronics and Control

Joint optimization algorithm of estimation and identification for reentry target tracking

  • ZHANG Jinfeng ,
  • HE Chongyang ,
  • LIANG Yan
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-07-08

  Revised date: 2015-11-26

  Online published: 2015-12-24

Supported by

National Natural Science Foundation of China (61135001,61374023,61374159);Aeronautical Science Foundation of China (20125153)

Abstract

Reliable identification of ballistic coefficient and accurate estimation of target state are important issues and coupled:the state estimation error may trigger identification risk while identification risk causes state estimation error due to modeling mismatch. Therefore, it is essential to estimate the target state and identify unknown model parameters jointly. In this paper, the joint optimization algorithm PF-EM is proposed for tracking a reentry target with unknown ballistic coefficient, which is realized by using particle filter (PF) smoother under the expectation-maximization (EM) iterative framework. In the E-step, the random particle sampling strategy is utilized to approximate the likelihood function to deal with the inherited nonlinearity. In the M-step, the numerical optimization algorithm is applied to update mass-to-drag ratio. In the simulation compared with the traditional algorithm which augments the state vector with the unknown parameter, the proposed algorithm shows the improvement in both state estimate and parameter identification.

Cite this article

ZHANG Jinfeng , HE Chongyang , LIANG Yan . Joint optimization algorithm of estimation and identification for reentry target tracking[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(5) : 1634 -1643 . DOI: 10.7527/S1000-6893.2015.0321

References

[1] LI X R, JILKOV V P. Survey of maneuvering target tracking. Part II:Motion models of ballistic and space targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):96-119.
[2] FARINA A, RISTIC B, BENVENUTI D. Tracking a ballistic target:Comparison of several nonlinear filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3):854-867.
[3] 郭利杰. 再入目标的雷达跟踪与质阻比估计[D]. 西安:西安电子科技大学, 2013:1-10. GUO L J. Radar tracking and mass-to-drag ratio estimation for reentry targets[D]. Xi'an:Xidian University, 2013:1-10(in Chinese).
[4] RISTIC B, FARINA A, BENVENUTI D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceedings Radar, Sonar & Navigation, 2003, 150(2):65-70.
[5] HAN L J, CUI S H, MIAO S B, et al. The close ballistic target tracking based on extended Kalman filter[J]. Applied Mechanics & Materials, 2013, 347-350:3639-3643.
[6] 俞建国, 刘梅, 陈锦海. 弹道目标航迹片段关联及优化[J]. 航空学报, 2011, 32(10):1897-1904. YU J G, LIU M, CHEN J H. Ballistic target track segments association and optimization[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1897-1904(in Chinese).
[7] CARDILLO G P, MRSTIK A, PLAMBECK V T. A track filter for reentry objects with uncertain drag[J]. IEEE Transactions on Aerospace & Electronic Systems, 1999, 35(2):394-409.
[8] SIOURIS G M, CHEN G, WANG J. Tracking an incoming ballistic missile using an extended interval Kalman filter[J]. IEEE Transactions on Aerospace & Electronic Systems, 1997, 33(1):232-240.
[9] COSTA P J. Adaptive model architecture and extended Kalman-Bucy filters[J]. IEEE Transactions on Aerospace & Electronic Systems, 1994, 30(2):525-533.
[10] 饶彬. 对抗条件下弹道目标的雷达跟踪技术[D]. 长沙:国防科学技术大学, 2011:1-15. RAO B. Study on radar tracking technologies of ballistic targets in the presence of countermeasures[D]. ChangSha:National University of Defense Technology, 2011:1-15(in Chinese).
[11] LOGOTHETIS A, KRISHNAMURTHY V. Expectation maximization algorithms for MAP estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 1999, 47(8):2139-2156.
[12] TASKAR B, GRACA J V, GANCHEV K. Expectation Maximization and posterior constraints[J]. Nips, 2007:569-576.
[13] LOGOTHETIS A, KRISHNAMURTHY V, HOLST J. A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter[J]. Signal Processing, 2002, 82(3):473-490.
[14] WILLETT P, RUAN Y, STREIT R. PMHT:Problems and some solutions[J]. IEEE Transactions on Aerospace & Electronic Systems, 2002, 38(3):738-754.
[15] LI Z, CHEN S, LEUNG H, et al. Joint data association, registration, and fusion using EM-KF[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(2):496-507.
[16] JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422.
[17] HAI H D, DAI S W, CONG Y C, et al. Performance comparison of EKF/UKF/CKF for the tracking of ballistic target[J]. Telkomnika Indonesian Journal of Electrical Engineering, 2012, 10(7):1692-1699.
[18] CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved particle filter for nonlinear problems[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(1):2-7.
[19] WU C L, JU Y F, HAN C Z. An improved particle filter with applications in ballistic target tracking[J]. Sensors & Transducers, 2014, 172(6):196-201.
[20] SCHON T B, WILLS A, NINNESS B. System identification of nonlinear state-space models[J]. Automatica, 2011, 47(1):39-49.
[21] ZIA A, KIRUBARAJAN T, REILLY J P, et al. An EM algorithm for nonlinear state estimation with model uncertainties[J]. IEEE Transactions on Signal Processing, 2008, 56(3):921-936.
[22] 周万幸. 弹道导弹雷达目标识别技术[M]. 北京:电子工业出版社, 2011:166-169. ZHOU W X. BMD radar target recognition technology[M]. Beijing:Publishing House of Electronics Industry, 2011:166-169(in Chinese).
[23] GIBSON S, NINNESS B. Robust maximum-likelihood estimation of multivariable dynamic systems[J]. Automatica, 2005, 41(10):1667-1682.
[24] 金文彬, 刘永祥, 黎湘, 等. 再入目标质阻比估计算法研究[J]. 国防科技大学学报, 2004, 26(5):46-51. JIN W B, LIU Y X, LI X, et al. Research on estimation of mass-to-drag ratio of reentry objects[J]. Journal of National University of Defense Technology, 2004, 26(5):46-51(in Chinese).

Outlines

/