Electronics and Control

A ground moving target parameter estimation method in spectrogram for FMCW SAR

  • LIANG Ying ,
  • ZHANG Qun ,
  • WU Yong ,
  • GU Fufei ,
  • YANG Qiu
Expand
  • 1. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China;
    2. Collaborative Innovation Center of Information Sensing and Understanding, Xi'an 710077, China;
    3. Unit 95980 of PLA, Xiangyang 441100, China;
    4. Shaanxi Institute of Metrology, Xi'an 710065, China

Received date: 2015-06-08

  Revised date: 2015-07-22

  Online published: 2015-12-21

Supported by

National Natural Science Foundation of China (61471386)

Abstract

The ground moving target parameter estimation method for frequency modulated continuous wave (FMCW) synthetic aperture radar (SAR) is studied. The displaced phase center antenna (DPCA) technique is utilized to cancel the ground clutter, then the influence of the platform and target continuous movement to the echo are analysed, and the relationship between slow time envelope (STE) term and ground moving target parameter is deduced. On this basis, a ground moving target parameter estimation method in spectrogram is proposed. Firstly, the Radon transform is utilized to estimate the equivalent across-track velocity which leads to the range walk, and then the range walk is corrected. Secondly, amplitude of the received signals is extracted from spectrogram, and the change of the amplitude is related to the STE. According to the relationship between the amplitude and along-track velocity, the along-track velocity of target is estimated. Furthermore the across-track velocity of target is calculated. The 2D velocity of ground moving target can be accurately estimated in spectrogram with the proposed method. Finally, the feasibility and effectiveness of the proposed method are proved by the simulation results.

Cite this article

LIANG Ying , ZHANG Qun , WU Yong , GU Fufei , YANG Qiu . A ground moving target parameter estimation method in spectrogram for FMCW SAR[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(5) : 1614 -1621 . DOI: 10.7527/S1000-6893.2015.0325

References

[1] META A, HOOGEBOOM P, LIGTHART L P. Signal processing for FMCW SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3519-3532.
[2] META A, HOOGEBOOM P. Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR[C]//IEEE International Radar Conference. Piscataway, NJ:IEEE Press, 2005:326-331.
[3] LIU Y, DENG Y, WANG R, et al. Efficient and precise frequency-modulated continuous wave synthetic aperture radar raw signal simulation approach for extended scenes[J]. IET Radar Sonar Navigation, 2012, 6(9):858-866.
[4] RIBALTA A. Time-domain reconstruction algorithms for FMCW-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):396-400.
[5] STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings Radar Sonar Navigation, 1992, 139(5):343-350.
[6] 张双喜, 李军, 张磊, 等. 基于级数反演的斜视FMCW SAR成像算法研究[J]. 电子学报, 2013, 41(3):532-538. ZHANG S X, LI J, ZHANG L, et al. Frequency modulated continuous wave squint synthetic aperture radar imaging algorithm based on series reversion[J]. Acta Electronica Sinica, 2013, 41(3):532-538(in Chinese).
[7] 梁颖, 张群, 杨秋, 等. 弹载调频连续波合成孔径雷达大斜视成像方法研究[J]. 电波科学学报, 2014, 29(6):1115-1121. LIANG Y, ZHANG Q, YANG Q, et al. High squint imaging method for missile-borne FMCW SAR[J]. Chinese Journal of Radio Science, 2014, 29(6):1115-1121(in Chinese).
[8] META A, HOOGEBOOM P. Signal processing algorithms for FMCW moving target indicator synthetic aperture radar[C]//Proceedings of IGARSS, 2005:316-319.
[9] 梁毅, 周峰, 邢孟道, 等. 采用调频连续波的高速动目标检测方法[J]. 西安电子科技大学学报:自然科学版, 2008, 35(4):586-591. LIANG Y, ZHOU F, XING M D, et al. High speed ground moving target detection research using triangular FMCW modulation[J]. Journal of Xidian University:Natural Science Edition, 2008, 35(4):586-591(in Chinese).
[10] 梁毅, 王虹现, 邢孟道, 等. 调频连续波SAR慢速动目标参数估计与成像[J]. 系统工程与电子技术, 2011, 33(5):1001-1006. LIANG Y, WANG H X, XING M D, et al. Slow ground moving target parameter estimation and imaging in FMCW SAR[J]. Systems Engineering and Electronics, 2011, 33(5):1001-1006(in Chinese).
[11] 罗运华, 宋红军, 王宇, 等. 基于精确二维频谱的调频连续波SAR动目标特性分析[J]. 电子与信息学报, 2013, 34(8):1834-1840. LUO Y H, SONG H J, WANG Y, et al. Characteristics analysis of moving target in frequency-modulation continuous-wave SAR based on an accurate 2-D spectrum[J]. Journal of Electronics and Information Technology, 2013, 34(8):1834-1840(in Chinese).
[12] 王金伟, 周峰, 吴玉峰, 等. FMCW-SAR体制下快速运动目标检测与成像方法[J]. 电子与信息学报, 2014, 36(11):2684-2690. WANG J W, ZHOU F, WU Y F, et al. Approach for fast-moving target detection and imaging in FMCW SAR[J]. Journal of Electronics and Information Technology, 2014, 36(11):2684-2690(in Chinese).
[13] LIVINGSTONE C E, SIKANETA I, GIERULL C H, et al. An airborne synthetic aperture radar (SAR) experiment to support RADARSAT-2 ground moving target indication (GMTI)[J]. Canadian Journal of Remote Sensing, 2002, 28(6):794-813.
[14] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京:电子工业出版社, 2005:318-319. BAO Z, XING M D, WANG T. Radar imaging technique[M]. Beijing:Publishing House of Electronics Industry, 2005:318-319(in Chinese).
[15] 王肖洋, 高贵, 周石琳, 等. 一种基于双通道DPCA的SAR-GMTI杂波抑制方法[J]. 雷达学报, 2014, 3(2):241-248. WANG X Y, GAO G, ZHOU S L, et al. A clutter suppression approach for SAR-GMTI based on dual-channel DPCA[J]. Journal of Radars, 2014, 3(2):241-248(in Chinese).
[16] 朱丰, 张群, 冯有前, 等. 压缩感知在ISAR谱图压缩重构中的应用[J]. 信号处理, 2010, 26(10):1583-1587. ZHU F, ZHANG Q, FENG Y Q, et al. Compressive sensing in ISAR spectrogram compressing and reconstruction[J]. Signal Processing, 2010, 26(10):1583-1587(in Chinese).
[17] 张伟, 童创明, 张群, 等. 基于DPCA杂波抑制的地面振动目标微多普勒提取[J]. 系统工程与电子技术, 2011, 33(4):738-741. ZHANG W, TONG C M, ZHANG Q, et al. Micro-Doppler extraction of ground vibrating targets based on SAR/DPCA technique[J]. Systems Engineering and Electronics, 2011, 33(4):738-741(in Chinese).
[18] WOOD J C, BARRY D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]. IEEE Transactions on Signal Processing, 1994, 42(11):3166-3177.
[19] 杨剑, 许人灿, 鲍庆龙, 等. 基于熵最小准则的ISAR成像高速运动补偿实现方法[J]. 信号处理, 2009, 25(12):1861-1866. YANG J, XU R C, BAO Q L, et al. The implemental methods of high velocity compensation in ISAR imaging based on entropy minimization[J]. Signal Processing, 2009, 25(12):1861-1866(in Chinese).

Outlines

/