ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet
Received date: 2015-02-02
Revised date: 2015-08-03
Online published: 2015-12-21
In order to improve the aerodynamic efficiency with the change of lift coefficient and Mach number, the technology of variable camber wing has been applied to civil transport jet. Taking the airfoil of long-range wide body transport jet as a case study, the effects of variable camber on airfoil's aerodynamic performance and pressure distribution are investigated. By applying surrogate model, the relationships between airfoil camber and aerodynamic performance under different design conditions are built. Furthermore, an airfoil variable camber optimization method based on surrogate model is proposed. Testing cases show that the optimization method can predict best camber at given lift coefficient and Mach number, result in aerodynamic performance improvement. The proposed method can be applied to variable wing design in civil transport jet engineering.
LIANG Yu , SHAN Xiaowen . Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 790 -798 . DOI: 10.7527/S1000-6893.2015.0216
[1] ANTONY J. Efficient aerodynamic shape optimization:AIAA-2004-4369[R]. Reston:AIAA, 2004.
[2] 梁煜, 程小全, 郦正能, 等. 基于代理模型的气动外形平面参数多目标匹配设计[J]. 航空学报, 2010, 31(6):1141-1148. LIANG Y, CHENG X Q, LI Z N, et al. Multi-object aerodynamic configuration parameter design using GA and Kriging[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1141-1148(in Chinese).
[3] LIANG Y, CHENG X Q, LI Z N, et al. Multi-objective robust airfoil optimization based on NURBS representation[J]. Science China:Technological Sciences, 2010, 53(10):2708-2717.
[4] LIANG Y, CHENG X Q, LI Z N, et al. Robust multi-objective wing design optimization via approximation model of CFD[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(2):286-300.
[5] HAGER J O, EYI S, LEE K D. Multi point design of transonic airfoils using optimization:AIAA-1992-4225[R].Reston:AIAA, 1992.
[6] BEATTY T D, BROOKS W B, ROBINSON L D. Investigation of a variable camber wing design:AD A045951[R]. Texas:VOUGHT CORP, 1977.
[7] RENKEN J H. Mission adaptive wing camber control systems for transport aircraft:AIAA-1985-5006[R]. Reston:AIAA, 1985.
[8] Preliminary Design Department. Assessment of variable camber for application to transport aircraft:NASA-CR-158930[R]. Washington, D.C.:NASA, 1980.
[9] BOLONKIN A, GILUARD G B. Estimated benefits of variable-geometry wing camber controal for transport aircraft:NASA/TM-1999-206586[R]. Washington, D.C.:NASA, 1999.
[10] GILYARD G B, GEORGIE J, BARNICKI J S. Flight test of an adaptive configuration optimization system for transport aircraft:NASA/TM-1999-206569[R]. Washington, D.C.:NASA, 1999.
[11] STRUBER H. The aerodynamic design of the A350 XWB-900 high lift system[C]//29th Congress of the International Council of the Aeronautical Sciences. St. Petersburg:ICAS, 2014:7-9.
[12] URNES J, NGUYEN N, IPPOLITO C, et al. A mission-adaptive variable camber flap control system to optimize high lift and cruise lift to drag ratios of future N+3 transport aircraft:AIAA-2013-0214[R]. Reston:AIAA,2013.
[13] KAUL U K, NGUYEN N T. Drag optimization study of variable camber continuous trailing edge flap(VCCTEF) using OVERFLOW:AIAA-2014-2444[R]. Reston:AIAA,2014.
[14] IPPOLITO C, NGUYEN N, TOTAH J, et al. Initial assessment of a variable-camber continuous trailing-edge flap system on a rigid wing for drag reduction in subsonic cruise:AIAA-2013-5143[R]. Reston:AIAA, 2013.
[15] RODRIGUEZ D L, AFTOSMIS M J, NEMEC M, et al. Optimized off-design performance of flexible wings with continuous trailing-edge flaps:AIAA-2015-1409[R]. Reston:AIAA, 2015.
[16] 陈秀, 葛文杰, 张永红, 等. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5):1230-1235. CHEN X, GE W J, ZHANG Y H, et al. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1230-1235(in Chinese).
[17] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1):46-53. CHEN Q, BAI P, YING W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese).
[18] 熊俊涛, 乔志德, 韩忠华. 基于响应面法的跨声速机翼气动优化设计[J]. 航空学报, 2006, 27(3):399-402. XIANG J T, QIAO Z D, HAN Z H. Optimum aerodynamic design of transonic wing based on response surface methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):399-402(in Chinese).
[19] 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报, 2005, 22(5):608-612. MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5):608-612(in Chinese).
[20] 王振国, 陈小前, 罗文彩, 等.飞行器多学科设计优化理论与应用研究[M]. 北京:国防工业出版社, 2006:110-158. WANG Z G, CHEN X Q, LUO W C, et al. Research on the theory and application of multidisciplinary design optimization of flight vehicles[M]. Beijing:National Defense Industry Press, 2006:110-158(in Chinese).
/
〈 | 〉 |