ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Track-to-airline association based on multi-feature reasoning
Received date: 2015-05-26
Revised date: 2015-11-23
Online published: 2015-12-17
Supported by
National Natural Science Foundation of China (611350001, 61374023)
Considering track classification problem, the application of complex reasoning in the multi-feature track decision is studied. Firstly, according to the requirements of air traffic control system for airway and flight, an association model of track-to-airline is developed. Secondly, similarities between target features(position, direction) and information of known tracks are computed, basic belief assignments are constructed and then the target single feature classification results are obtained by fusion. The introduction of meta-class brings out the generalized credit classification for targets class. A multi-feature discount method is developed, giving the discount on features' basic belief assignments before fusion to get the target multi-feature classification results. The simulations and the test on real data of air traffic control system show that the method not only make the track classification, but also decrease the fault rate of classification.
LIANG Yan , WANG Xiaohua , LI Li , ZHANG Jinfeng , SHI Zhiyuan , YANG Feng . Track-to-airline association based on multi-feature reasoning[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(5) : 1595 -1602 . DOI: 10.7527/S1000-6893.2015.0318
[1] 王增福, 潘泉, 陈丽平,等. 基于航路-航迹关联的天波超视距雷达航迹分类[J]. 系统工程与电子技术, 2012, 34(10):2018-2022 WANG Z F, PAN Q, CHEN L P, et al. Tracks classification based on airway-track association for over-the-horizon radar[J]. Systems Engineering and Electronics, 2012, 34(10):2018-2022(in Chinese).
[2] HAYKIN S, STEHWIEN W, DENG C, et al. Classification of radar clutter in an air traffic control environment[J]. Proceedings of the IEEE, 1991, 79(6):742-772.
[3] NOYES S P. Track classification in naval defense radar using fuzzy logic[C]//Proceedings of Colloquium on Target Tracking and Data Fusion. Pisscataway, NJ:IEEE Press, 1998:1-6.
[4] GHADAKI H. Feature formation and classification of radar targets[D]. Toronto:University of Toronto, 2006:14-15.
[5] 程铭, 陈宇寒. 飞行计划和雷达航迹关联目标识别算法[J]. 四川兵工学报, 2010, 31(5), 107-109. CHENG M, CHEN Y H. Target recognition algorithm of association with flight plan and radar dynamic track[J]. Journal of Sichuan Ordnance, 2010, 31(5):107-109(in Chinese).
[6] OXENHAM M. Automatic air target to airline association[C]//Proceedings of the 3rd International Conference on Information. Piscataway, NJ:IEEE Press, 2000:4-19.
[7] MAFTIN H. Multi-sensor track classification in ro-torcraft pilot's associate data fusion[C]//Proceedings of 53th Annual Forum-American Helicopter Society. Virginia:American Helicopter Society, 1997:271-280.
[8] LEUNG H, WU J. Bayesian and dempster-shafer target identification for radar surveillace[J]. Aerospace and Electronic Systems, 2000, 36(2):432-447.
[9] MERCIER D, LEFÈVRE É, JOLLY D. Object association with belief functions, an application with vehicles[J]. Information Sciences, 2011, 181(24):5485-5500
[10] WARTELLE N, DELMOTTE F, GAQUER D. Classification de scènes à nombre d'objets inconnu[C]//MAnifestation des Jeunes Chercheurs STIC, Lorient:Presse Universitaires Française (PUF), 2006:22-24.
[11] ZOGHBY N, CHERFAOUI V. Optimal object association from pairwise evidential mass functions[C]//Proceedings of the 16th International Conference on Information Fusion. Pisscataway, NJ:IEEE Press, 2013:774-780.
[12] HACHOUR S, DELMOTTE F, MERCIER D. Tracking and identification of multiple targets[C]//Proceedings of the 7th Workshop Interdisciplinaire sur la Sécurité Globale. Troyes, France:Agence Nationale de Recherche (ANR), 2013:13-18.
[13] HACHOUR S, DELMOTTE F, MERIER D, et al. Object tracking and credal classification with kinematic data in a multi-target context[J]. Information Fusion, 2014, 20:174-188.
[14] DENOEUX T, MASSON M H. EVCLUS:Evidential clus-tering of proximity data[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2004, 34(1):95-109.
[15] MASSON M H, DENOEUX T. ECM:An evidential version of the fuzzy c-means algorithm[J]. Pattern Recognition. 2008, 41(4):1384-1397.
[16] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981:203-239.
[17] DAVE R N. Clustering of relational data containing noise and outliers[C]//Proceedings of the 1998 IEEE International Conference on Fuzzy Systems.Piscataway, NJ:IEEE Press, 1998:1411-1416.
[18] ALTINCAY H.Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation[J]. Applied Soft Computing, 2007, 7(3):1072-1083.
[19] LIU Z, PAN Q, DEZERT J. Classification of uncertain and imprecise data based on evidence theory[J]. Neuro Computing, 2014, 133:459-470.
[20] LIU Z, PAN Q, DEZERT J. A new belief-based K-nearest neighbor classification method[J]. Pattern Recognition, 2013, 46(3):834-844.
/
〈 | 〉 |