Material Engineering and Mechanical Manufacturing

An improved calculation model for forward slip in rolling compressor blade

  • JIN Qichao ,
  • WANG Wenhu ,
  • JIANG Ruisong ,
  • ZHAO Dezhong ,
  • CUI Kang ,
  • XIONG Yifeng
Expand
  • The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-10-12

  Revised date: 2015-11-09

  Online published: 2015-12-17

Supported by

National Natural Science Foundation of China (51475374)

Abstract

In the process of roll forming, the speed of component is faster than that of the roller at the end of rolling deformation zone, namely rolling forward slip phenomenon, which affects component forming precision. For the forward slip problem in the process of roll forming allowance free blade, based on the analysis of the blade roll forming process, we calculate the integral of different thicknesses along chordwise and then took the average, in this way the blade roll forward slip calculation model is established. Also, flat plat, V-shaped plate and straight grain blade are used to validate the blade roll forward slip calculation model with FEM respectively. The results show that calculation model can accurately express forward slip in rolling deformation, which lays a foundation for the forward slip study in rolling un-symmetrical component.

Cite this article

JIN Qichao , WANG Wenhu , JIANG Ruisong , ZHAO Dezhong , CUI Kang , XIONG Yifeng . An improved calculation model for forward slip in rolling compressor blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 3178 -3185 . DOI: 10.7527/S1000-6893.2015.0328

References

[1] 王辉, 吴宝海, 李小强. 新一代商用航空发动机叶片的先进加工技术[J]. 航空制造技术, 2014(20):26-31. WANG H, WU B H, LI X Q. Advanced machining technology of new generation commercial aero-engine blade[J]. Aeronautical Manufacturing Technology, 2014(20):26-31(in Chinese).
[2] 赵升吨, 赵承伟, 邵中魁, 等. 现代叶片成形工艺的探讨[J]. 机床与液压, 2012, 40(21):167-170. ZHAO S D, ZHAO C W, SHAO Z K, et al. Discussion about the modern forming process of leaves[J]. Machine Tool and Hydraulics, 2012, 40(21):167-170(in Chinese).
[3] 于建民. 叶片温辊轧成型工艺及装备研究[D]. 太原:中北大学, 2006:34-42. YU J M. The research on the technology of the warm rolling and equipment of blade[D]. Taiyuan:North University of China, 2006:34-42(in Chinese).
[4] ODUGUWA V, ROY R. A review of rolling system design optimization[J]. International Journal of Machine Tools & Manufacture, 2006, 46(7):912-928.
[5] 于建民, 张治民. 叶片辊轧工艺的计算机模拟[J]. 锻压装备与制造技术, 2005, 40(3):833-836. YU J M, ZHANG Z M. The computer simulation of blade rolling technology[J]. China Metalforming Equipment and Manufacturing Technology, 2005, 40(3):833-836(in Chinese).
[6] MYNORS D J, ENGLISH M, CASTELLUCCI M. Controlling the cold roll forming design process[J]. CIRP Annals-Manufacturing Technology, 2006, 55(1):271-274.
[7] 周道. 航空叶片冷辊轧过程仿真分析[D]. 沈阳:东北大学, 2010:41-69. ZHOU D. Simulation and analysis of blade cold roll forming process[D]. Shenyang:Northeastern University, 2010:41-69(in Chinese).
[8] 董连超. 变厚度轧制金属塑性流动规律[D]. 秦皇岛:燕山大学, 2013:20-30. DONG L C. Metal flow law of longitudinally profiled flat steel[D]. Qinhuangdao:Yanshan University, 2013:20-30(in Chinese).
[9] KAZEMINIEZHAD M, TAHERI A K. Calculation of the rolling pressure distribution and force in wire flat rolling process[J]. Journal of Materials Processing Technology, 2006, 171(2):253-258.
[10] MAMALIS A G, JOHNSON W, HAWKYARD J B. Pressure distribution, roll force and torque in cold ring rolling[J]. Journal of Mechanical Engineering Science, 1976, 4(18):196-209.
[11] HEDAYATI A, NAJAFIZADEH A, KERMANPUR A, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel[J]. Journal of Materials Processing Technology, 2010, 210(8):1017-1022.
[12] 冯莹娟. 锻造-冷辊轧GH4169合金叶片组织性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012:16-30. FENG Y J. Study of microstructure and mechanical property of forged and cold rolling GH4169 alloy blade[D]. Harbin:Harbin Institute of Technology, 2012:16-30(in Chinese).
[13] SEDIGHI M, MAHMOODI M. An approach to simulate cold roll-forging of turbo-engine thin compressor blade[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2009, 81(3):191-198.
[14] SEDIGHI M, MAHMOODI M. Pressure distribution in cold rolling of turbo engine thin compressor blades[J]. Materials and Manufacturing Processes, 2012(27):401-405.
[15] 毛君, 曹治, 董晓丹. 叶片辊轧过程中变形的影响因素[J]. 科技导报, 2014, 32(7):56-61. MAO J, CAO Z, DONG X D. Influencing factors on deformation of blade rolling process[J]. Science & Technology Review, 2014, 32(7):56-61(in Chinese).
[16] 毛君, 张瑜, 李深亮, 等. 叶片辊轧过程力学仿真研究[J]. 锻压技术, 2013, 38(1):76-79. MAO J, ZHANG Y, LI S L, et al. Dynamics simulation study on blade rolling process[J]. Forging & Stamping Technology, 2013, 38(1):76-79(in Chinese).
[17] HU X L, JIAO Z J, HE C Y, et al. Forward and backward slip models in MAS rolling process and Its online application[J]. Journal of Iron and Steel Research International, 2007, 14(4):15-19.
[18] YANG J M, CHEN Y, ZHAO Z W, et al. Study on forward slip model for aluminum hot tandem rolling[J]. Journal of Information & Computational Science, 2013, 10(18):6101-6111.
[19] LI E B, TIEU A K, YUEN W Y D. Forward slip measurements in cold rolling by laser Doppler velocimetry:uncertainty analysis and accuracy improvement[J]. Journal of Materials Processing Technology, 2003, 133(3):348-352.
[20] 余伟, 孙广杰. TRB薄板变厚度轧制中前滑理论模型和数值模拟[J]. 北京科技大学学报, 2014, 36(2):241-245. YU W, SUN G J. Forward slip theoretical model and simulation for variable gauge rolling of TRB sheet[J]. Journal of University of Science and Technology Beijing, 2014, 36(2):241-245(in Chinese).
[21] 李学花. 轧制过程中前滑的影响因素探析[J]. 科技创新论坛, 2014, 14:164-165. LI X H. The influence of rolling process forward slip factor analysis[J]. Technology Forum, 2014, 14:164-165(in Chinese).
[22] 宋剑锋, 张文志, 董永刚, 等. 万能轧制过程轧件相对立辊前滑的理论和实验研究[J]. 塑性工程学报, 2010, 17(1):119-122. SONG J F, ZHANG W Z, DONG Y G, et al. The theoretical and experimental research on the forward slip between the vertical roll and the rail in rail universal rolling[J]. Journal of Plasticity Engineering, 2010, 17(1):119-122(in Chinese).
[23] 赵志业. 金属塑性变形与辊轧理论[M]. 北京:冶金工业出版社, 2012:264-269. ZHAO Z Y. Metal plastic deformation and rolling theory[M]. Beijing:Metallurgical Industry Press, 2012:264-269(in Chinese).
[24] PARK J J. Finite-element analysis of severe plastic deformation in differential-speed rolling[J]. Computational Materials Science, 2015, 100(1):61-66.
[25] JI Y P, PARK J J. Development of severe plastic deformation by various asymmetric rolling processes[J]. Materials Science and Engineering A, 2009, 499(1):14-19.
[26] 李荣斌, 姚枚, 刘文昌, 等. 冷轧对GH4169合金组织与性能的影响[J]. 金属热处理, 2002, 27(7):12-15. LI R B, YAO M, LIU W C, et al. Effects of cold rolling on microstructure and performance of GH4169 alloy[J]. Metal Heat Treatment, 2002, 27(7):12-15(in Chinese).
[27] 王涛, 陈国定, 巨江涛. GH4169高温合金高应变率本构关系试验研究[J]. 航空学报, 2013, 34(4):946-953. WANG T, CHEN G D, JU J T. Experimental study of constitutive relationship of superalloy GH4169 under high strain rates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):946-953(in Chinese).

Outlines

/