ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Damage parameter determination and life modeling for high temperature fatigue of single crystals
Received date: 2015-08-31
Revised date: 2015-11-03
Online published: 2015-12-08
Supported by
National Natural Science Foundation of China (51375031); Aeronautical Science Foundation of China (2015ZBN3004)
High temperature fatigue damage is a major factor causing the failure of single crystal turbine blades. The influence mechanisms of crystal orientation, strain range, mean strain and dwell time on the high temperature fatigue damage of nickel-based single crystal superalloys are studied respectively with the results of low cycle fatigue and creep-fatigue tests on DD6 standard specimens under different testing conditions and with viscoplastic stress-strain analysis based on slip systems. Furthermore, the slip system with the max slip shear strain is utilized as the critical slip system where the max Schmid stress, max slip shear strain rate, cyclic Schmid stress ratio and slip shear strain range are selected as the damage parameters, and a new cyclic damage accumulation (CDA) model based on critical plane is proposed. The results indicate that the predicted high temperature fatigue life of DD6 with the proposed CDA model based on critical plane is basically within a factor three of the experimental life.
JING Fulei , WANG Rongqiao , HU Dianyin , JIANG Kanghe . Damage parameter determination and life modeling for high temperature fatigue of single crystals[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(9) : 2749 -2756 . DOI: 10.7527/S1000-6893.2015.0326
[1] 胡壮麒, 刘丽荣, 金涛, 等. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31(3): 1-7. HU Z Q, LIU L R, JIN T, et al. Development of the Ni-based single crystal superalloys[J]. Aeroengine, 2005, 31(3): 1-7 (in Chinese).
[2] 陶春虎, 钟培道, 王仁智, 等. 航空发动机转动部件的失效与预防[M]. 北京: 国防工业出版社, 2008: 46-83. TAO C H, ZHONG P D, WANG R Z, et al. Failure analysis and prevention for rotor in aero-engine[M]. Beijing: National Defense Industry Press, 2008: 46-83 (in Chinese).
[3] 丁智平, 刘义伦, 尹泽勇. 镍基单晶高温合金蠕变-疲劳寿命评估方法进展[J]. 机械强度, 2003, 25(3): 254-259. DING Z P, LIU Y L, YIN Z Y. Development on evaluating method of creep-fatigue life of single crystal nickel-based superalloys[J]. Journal of Mechanical Strength, 2003, 25(3): 254-259 (in Chinese).
[4] 李影, 苏彬, 吴学仁. 高温下取向对DD6单晶高温合金低周疲劳寿命的影响[J]. 航空材料学报, 2001, 21(2): 22-25. LI Y, SU B, WU X R. Orientation dependence of low cycle fatigue life of single-crystal nickel-base superalloy DD6 under high temperature[J]. Journal of Aeronautical Materials, 2001, 21(2): 22-25 (in Chinese).
[5] 李影, 苏彬. DD6单晶合金高温低周疲劳机制[J]. 航空动力学报, 2003, 18(6): 732-736. LI Y, SU B. Mechanisms of low cyclic fatigue of DD6 alloy at elevated temperature[J]. Journal of Aerospace Power, 2003, 18(6): 732-736 (in Chinese).
[6] LI S X, ELLISON E G, SMITH D J. The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloys[J]. Journal of Strain Analysis for Engineering Design, 1994, 29(2): 147-153.
[7] 岳珠峰, 陶仙德, 尹泽勇, 等. 一种镍基单晶超合金高温低周疲劳的晶体取向相关性模型[J]. 应用数学和力学, 2000, 21(4): 373-381. YUE Z F, TAO X D, YIN Z Y, et al. A crystallographic model for the orientation dependence of low cyclic fatigue property of a nickel-base single crystal superalloy[J]. Applied Mathematics and Mechanics, 2000, 21(4): 373-381 (in Chinese).
[8] 石多奇, 杨晓光, 于慧臣. 一种镍基单晶和定向结晶的疲劳寿命模型[J]. 航空动力学报, 2010, 25(8): 1871-1875. SHI D Q, YANG X G, YU H C. Fatigue life prediction model for nickel-based single crystal and directionally solidified superalloy[J]. Journal of Aerospace Power, 2010, 25(8): 1871-1875 (in Chinese).
[9] KAROLCZUK A, MACHA E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials[J]. International Journal of Fracture, 2005, 134(1): 267-304.
[10] ARAKERE N K, SWANSON G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys[J]. Journal Engineering for Gas Turbines and Power, 2002, 124(1): 161-175.
[11] SWANSON G, ARAKERE N K. Effect of crystal orientation on analysis of single-crystal nickel-based turbine blade superalloys: NASA TP-2000-210074[R]. Washington, D.C.: NASA, 2000: 11-54.
[12] NAIK R A, DELUCA D P, SHAH D M. Critical plane fatigue modeling and characterization of single crystal nickel superalloys[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 391-400.
[13] SHI D Q, HUANG J, YANG X G, et al. Effects of crystallographic orientations and dwell types on low cycle fatigue and life modeling of a SC superalloy[J]. International Journal of Fatigue, 2013, 49(1): 31-39.
[14] 刘金龙. 镍基单晶/定向凝固涡轮叶片铸造模拟及其合金低循环疲劳行为研究[D]. 北京: 北京航空航天大学, 2011: 101-130. LIU J L. Investigation on cast simulation and low cycle fatigue behavior of Ni-based single crystal and directionally solidified turbine blade[D]. Beijing: Beihang University, 2011: 101-130 (in Chinese).
[15] LEVKOVITCH V, SIEVERT R, SVEBDSEN B. Simulation of deformation and lifetime behavior of a FCC single crystal superalloy at high temperature under low-cycle fatigue loading[J]. International Journal of Fatigue, 2006, 28(12): 1791-1802.
[16] TINGA T, BREKELMANS W A M, GEERS M G D. Time-incremental creep-fatigue damage rule for single crystal Ni-base superalloys[J]. Materials Science and Engineering A, 2009, 508(1-2): 200-208.
[17] 荆甫雷. 单晶涡轮叶片热机械疲劳寿命评估方法研究[D]. 北京: 北京航空航天大学, 2013: 59-75. JING F L. Research on thermo-mechanical fatigue life assessment of single crystal turbine blades[D]. Beijing: Beihang University, 2013: 59-75 (in Chinese).
[18] 王荣桥, 荆甫雷, 胡殿印. 基于临界平面的镍基单晶高温合金疲劳寿命预测模型[J]. 航空动力学报, 2013, 28(11): 2587-2592. WANG R Q, JING F L, HU D Y. Fatigue life prediction method based on critical plane for nickel-based single crystal superalloys[J]. Journal of Aerospace Power, 2013, 28(11): 2587-2592 (in Chinese).
[19] JORDAN E H, WALKER K P. A viscoplastic model for single crystals[J]. Journal of Engineering Materials and Technology, 1992, 114(1): 19-26.
[20] JORDAN E H, SHI S X, WALKER K P. The viscoplastic behavior of Hastelloy-X single crystal[J]. International Journal of Plasticity, 1993, 9(1): 119-139.
/
〈 | 〉 |