ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Dynamic grid deformation method based on radial basis function and hybrid background grid
Received date: 2015-07-10
Revised date: 2015-09-27
Online published: 2015-11-13
Supported by
National High-tech Research and Development Program of China (2012AA051304);Innovation Research Foundation of State Key Laboratory of Aerodynamics (SKLA2014CX001)
A dynamic grid deformation method based on radial basis function (RBF) interpolation and hybrid background grid mapping is presented in this paper. The hybrid background grid is made up of anisotropic grid near the moving surface and isotropic grid away from the moving surface. After the surface deforms or moves, all surface grid points contained in the anisotropic background grid are moved directly according to a prescribed motion or deformation to enforce an exact geometry. The motion of the isotropic background grid points is calculated through the RBF interpolation. Then the new computational grid after surface movement is generated through a one-to-one mapping between the computational grid and the hybrid background grid, which is maintained during the movement. Since the isotropic background grid points have a distance from the moving surface, exact geometry recovery is not essential for the RBF interpolation in the present method and the number of the RBF centers can be reduced to improve the efficiency and robustness of RBF interpolation. Finally, the present method is tested through two-dimensional and three-dimensional cases, focusing on deformed grid quality, parameter effect, grid topology dependence, complex shape deformation and efficiency. The test results show that this method can generate high-quality grid with large deformation efficiently.
SUN Yan , MENG Dehong , WANG Yuntao , DENG Xiaogang . Dynamic grid deformation method based on radial basis function and hybrid background grid[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(5) : 1462 -1472 . DOI: 10.7527/S1000-6893.2015.0266
[1] 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4):424-447. ZHANG L P, DENG X G, ZHANG H X. Reviews of moving grid generation techniques and numerical mehods for unsteady flow[J]. Advances in Mechanics, 2010, 40(4):424-447(in Chinese).
[2] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese).
[3] 周璇, 李水乡, 孙树立, 等. 非结构网格变形方法研究进展[J]. 力学进展, 2011, 41(5):547-561. ZHOU X, LI S X, SUN S L, et al. Advances in the research on unstructured mesh deformation[J]. Advances in Mechanics, 2011, 41(5):547-561(in Chinese).
[4] ALLEN C B. Aeroelastic computations using algebraic grid motion[J]. Aeronautical Journal, 2002, 106(1064):559-570.
[5] BYUN C, GURUSWAMY G P. A parallel, multi-block, moving grid method for aeroelastic applications on full aircraft:AIAA-1998-4782[R]. Reston:AIAA, 1998.
[6] REUTHER J, JAMESON A, FARMER J, et al. Aerodynamics shape optimization of complex aircraft configurations via an adjoint formulation:AIAA-1996-0094[R]. Reston:AIAA, 1996.
[7] GAITONDE A L, FIDDES S P. A three-dimensional moving mesh method for the calculation of unsteady transonic flows[J]. Aeronautical Journal, 1995, 99(984):150-160.
[8] SPREKREIJSE S P, PRANANTA B B, KOK J C. A simple, robust and fast algorithm to compute deformations of multiblock structured grids:NLR-TP-2002-105[R]. Amsterdam:NLR, 2002.
[9] BATINA J T. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis[J]. AIAA Journal, 1991, 29(3):327-333.
[10] FARHAT C, DEGAND C, KOOBUS B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computational Methods in Applied Mechanics and Engineering, 1998, 163(1):231-245.
[11] BLOM F. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6):647-668.
[12] JOHNSON A A, TEZDUYAR T E. Simulation of multiple spheres falling in a liquid-filled tube[J]. Computer Methods in Applied mechanics and Engineering, 1996, 134(3):351-373.
[13] NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6):1155-1163.
[14] LöEHNER R, YANG C. Improved ALE mesh velocities for moving bodies[J]. Communications in Numerical Methods in Engineering, 1996, 12(10):599-608.
[15] HELENBROOK B T. Mesh deformation using the biharmonic operator[J]. International Journal for Numerical Methods in Engineering, 2003, 56(7):1007-1021.
[16] LIU X Q, QIN N, XIA H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[17] RENDALL T C, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559.
[18] ALLEN C B, RENDALL T C. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R]. Reston:AIAA, 2007.
[19] WITTEVEEN J A S, BIJL H. Explicit mesh deformation using inverse distance weighting interpolation:AIAA-2009-3996[R]. Reston:AIAA, 2009.
[20] LEFRANCOIS E. A simple mesh deformation technique for fluid-structure interaction based on a submesh approach[J] International Journal for Numerical Methods in Engineering, 2008, 75(9):1085-1101.
[21] ZHANG L P, CHANG X H, DUAN X P, et al. Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems[J]. Computers & Fluids, 2012, 62:45-63.
[22] 张来平, 段旭鹏, 常兴华, 等. 基于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J]. 空气动力学学报, 2009, 27(1):32-40. ZHANG L P, DUAN X P, CHANG X H, et al. A hybrid dynamic grid generation technique for morphing bodies based on Delaunay graph and local remeshing[J]. Acta Aerodynamica Sinica, 2009, 27(1):32-40(in Chinese).
[23] CHANG X H, ZHANG L P, He X. Numerical study of the thunniform mode of fish swimming with different caudal fin shapes[J]. Computers & Fluids, 2012, 68:54-70.
[24] RENDALL T C, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[25] RENDALL T C, ALLEN C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8):2810-2820.
[26] LIU Y, GUO Z, LIU J. RBFs-MSA hybrid method for mesh deformation[J]. Chinese Journal of Aeronautics, 2012, 25(4):500-507.
[27] 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3):727-735. SUN Y, DENG X G, WANG G X, et al. An improvement on delaunay graph mapping dynamic grid method based on radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):727-735(in Chinese).
[28] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):783-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788(in Chinese).
[29] LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2):586-601.
[30] DEVROYE L, MUCKE E, ZHU B. A note on point location of Delaunay triangulation of random points[J]. Algorithmica, 1998, 22(4):477-482. deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423. [17] Rendall T C, Allen C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559. [18] Allen C B, Rendall T C. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions, AIAA-2007-3804[R]. Miami: AIAA, 2007. [19] Witteveen J A, Bijl H. Explicit mesh deformation using inverse distance weighting interpolation, AIAA-2009-3996[R]. San Antonio: AIAA, 2009. [20] Lefrancois E. A simple mesh deformation technique for fluid-structure interaction based on a submesh approach [J] International Journal for Numerical Methods in Engineering, 2008, 75(9):1085-1101. [21] Zhang L P, Chang X H, Duan X P, et al. Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems[J]. Computers & Fluids, 2012, 62:45-63. [22] Zhang L P, Duan X P, Chang X H, et al. A hybrid dynamic grid generation technique for morphing bodies based on Delaunay graph and local remeshing[J]. Acta Aerodynamica Sinica, 2009, 27(1):32-40. (in Chinese) 张来平,段旭鹏,常兴华等. 基于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J]. 空气动力学学报, 2009, 27(1):32-40. [23] Chang X H, Zhang L P, He X. Numerical study of the thunniform mode of fish swimming with different caudal fin shapes[J]. Computers & Fluids, 2012, 68:54-70. [24] Rendall T C, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249. [25] Rendall T C, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8):2810-2820. [26] Liu Y, Guo Z, Liu J. RBFs-MSA hybrid method for mesh deformation[J]. Chinese Journal of Aeronautics, 2012, 25(4):500-507. [27] Sun Y, Deng X G, Wang G X, et al. An improvement on delaunay graph mapping dynamic grid method based on radial basis functions[J]. Aeronautica et Astronautica Sinica, 2014, 35(3):727-735. (in Chinese) 孙岩,邓小刚,王光学等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报,2014, 35(3):727-735. [28] Wang G, Lei B Q, Ye Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788. (in Chinese) 王刚,雷博琪,叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报,2011, 29(5):783-788. [29] Luke E, Collins E, Blades E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2):586-601. [30] Devroye L, Mucke E, Zhu B. A note on point location of Delaunay triangulation of random points[J]. Algorithmica, 1998, 22(4):477–482.
/
〈 | 〉 |