ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of tip clearance on flow characteristics of a supersonic expander
Received date: 2014-11-27
Revised date: 2015-10-12
Online published: 2015-10-21
Supported by
Specialized Research Fund for the Doctoral Program of Higher Education of China(20132125120006);The Fundamental Research Funds for the Central Universities(3132014319);Supported by Program for Liaoning Innovative Research Team in University(LT2015004)
A clearance exists between strake wall and casing, which will certainly influence internal flow field and overall performance of a supersonic expander. To obtain the flow details of tip clearance flow in a supersonic expander, the three-dimensional Reynolds-averaged Navier-Stokes equations and the k-ε turbulent model are adopted in this paper to simulate numerically the tip clearance flow of a supersonic expander. It has been found that oblique shock wave at the outlet of the expansion passage leads to the fact that static pressure of the suction surface is higher than the pressure surface, parts of the leakage fluid near the trailing edge passes the clearance and reflows to the pressure surface. Because of the tip clearance, static pressures of the suction surface at the location of inlet and near the lower end wall increase, while the pressure at the pressure surface near the leading edge decreases. Compared with the same location of the strake wall, increasing the tip clearance height by 1% throat height, load coefficient of the strake wall of supersonic expander drops by as much as 2.6%. The loss of end wall and oblique shock wave reduces, but the tip leakage loss is produced, increasing the overall flow loss of the three-dimensional flow passage, and the efficiency of the supersonic expander drops, which decreases by up to 8.8% in this paper. The horseshoe vortex, the leakage vortex, and the interaction between them constitute the main vortex system of the tip area. The airflow near the leading edge through the clearance flow to the suction surface and the leakage fluid around the trailing edge across the gap back to the pressure surface is the main form of movement within the clearance.
Key words: supersonic expander; strake wall; tip clearance; expansion waves; leakage vortex
HUANG Zhenyu , ZHONG Jingjun , YANG Ling , HAN Ji'ang . Influence of tip clearance on flow characteristics of a supersonic expander[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 555 -567 . DOI: 10.7527/S1000-6893.2015.0269
[1] GUMMER V, GOLLER M, SWOBODA M. Numerical investigation of endwall boundary layer removal on highly-loaded axial compressor blade rows[J]. Journal of Turbomachinery, 2008, 130(1):011015-1-011015-9.
[2] BOOTH T C, DODGE P R, HEPWORTH H K. Rotor-tip leakage:Part I-Basic methodology[J]. Journal of Engineering for Gas Turbines and Power, 1982, 104(1):154-161.
[3] BINDON J P. The measurement and formation of tip clearance loss[J]. Journal of Turbomachinery, 1989, 111(3):257-263.
[4] YAMAMOTO A. Interaction mechanisms between tip leakage flow and the passage vortex in a linear turbine rotor cascade[J]. Journal of Turbomachinery, 1988, 111(3):329-338.
[5] YAMAMOTO A.Endwall flow/loss mechanisms in a linear turbine cascade with blade tip clearance[J]. Journal of Turbomachinery, 1989, 111(3):264-275.
[6] XIAO X W, MCCARTER A A, LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor:Part I-Pressure field and loss[J]. Journal of Turbomachinery, 2000, 123(2):296-304.
[7] MCCARTER A A, XIAO X W, LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor:Part Ⅱ-Velocity field and flow physics[J]. Journal of Turbomachinery, 2000, 123(2):305-313.
[8] YARAS M I, SJOLANDER S A. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades:Part I-Tip gap flow[J]. Journal of Turbomachinery, 1992, 114(3):652-659.
[9] YARAS M I, SJOLANDER S A, KIND R J. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades:Part Ⅱ-Downstream flow field and blade loading[J]. Journal of Turbomachinery, 1992, 114(3):660-667.
[10] 祁明旭, 丰镇平. 透平动叶顶部间隙流的表现形式及其对透平性能的影响[J]. 西安交通大学学报, 2005, 39(3):243-265. QI M X, FENG Z P. Representation formation of tip clearance flow and influence on turbine performance[J]. Journal of Xi'an Jiaotong University, 2005, 39(3):243-265(in Chinese).
[11] 祁明旭, 丰镇平. 透平动叶顶部间隙流的端壁二次流结构研究[J]. 西安交通大学学报, 2005, 39(5):445-449. QI M X, FENG Z P. Study on tip clearance flow of tur bine blade-endwall secondary flow struc-ture[J]. Journal of Xi'an Jiaotong University, 2005, 39(5):445-449(in Chinese).
[12] MOORE J, MOORE J G, HENRY G S, et al. Flow and heat transfer in turbine tip gaps[J]. Journal of Turbomachinery, 1989, 111(3):301-309.
[13] UZOL O, CHOW Y C, KATZ J, et al. Experimental investigation of unsteady flow field within a two-stage axial turbomachine using particle image velocimetry[J]. Journal of Turbomachinery, 2002, 124(4):542-552.
[14] UZOL O, CHOW Y C, KATZ J, et al. Average passage flow field and deterministic stresses in the tip and hub regions of a multistage turbomachine[J]. Journal of Turbomachinery, 2003, 125(4):714-725.
[15] NIU M S, ZANG S S. Experimental and numerical investigations of tip injection on tip clearance flow in an axial turbine cascade[J]. Experimental Thermal and Fluid Science, 2011, 35(6):1214-1222.
[16] 钟兢军, 黄振宇, 杨凌, 等. 超声速膨胀器设计及其内部流动研究[J]. 工程热物理学报, 2015, 36(1):60-66. ZHONG J J, HUANG Z Y, YANG L, et al. Research on the design and flow field of supersonic expander[J]. Journal of Engineering Thermophysics, 2015, 36(1):60-66(in Chinese).
[17] 贺旭照, 张勇, 汪广元, 等. 高超声速飞行器单壁膨胀喷管的自动优化设计[J]. 推进技术, 2007, 28(2):148-151. HE X Z, ZHANG Y, WANG G Y, et al. Automated design optimization of single expansion ramp nozzle for hypersonic vehicle[J]. Journal of Propulsion Technology, 2007, 28(2):148-151(in Chinese).
[18] 邓庆锋, 郑群, 张海, 等. 可控涡设计高负荷涡轮二次流旋涡结构及损失分析[J]. 中国电机工程学报, 2012, 32(20):108-114. DENG Q F, ZHENG Q, ZHANG H, et al. Analysis of secondary flow vortex structure and losses in a high load turbine designed by the controlled vortex method[J]. Proceedings of the CSEE, 2012, 32(20):108-114(in Chinese).
[19] DOWNEY D J, GRIFFIN L W, HUBER F W. A study of the effects of tip clearance in a supersonic turbine[J]. Journal of Turbomachinery, 2000, 122(4):674-683.
[20] 韩吉昂, 钟兢军, 严红明, 等. 旋转冲压压缩转子三维进气流道数值研究[J]. 航空动力学报, 2009, 24(5):1079-1088. HAN J A, ZHONG J J, YAN H M, et al. Numerical research of three dimensional flow-path in a ram-rotor[J]. Journal of Aerospace Power, 2009, 24(5):1079-1088(in Chinese).
[21] 邓庆锋, 郑群, 刘春雷, 等. 基于控制轴向速度变化的1.5级涡轮压力可控涡设计[J]. 航空学报, 2011, 32(12):2182-2193. DENG Q F, ZHENG Q, LIU C L, et al. Pressure controlled vortex design of 1.5-stage turbine based on the method of controlling axial velocity variation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2182-2193(in Chinese).
[22] 杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟[J]. 航空学报, 2010, 31(10):1919-1926. YANG C Y, ZHANG J Z, SHAN Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 32(10):1919-1926(in Chinese).
[23] 张少丽, 单勇, 张靖周. 单边膨胀喷管气动和红外辐射特性数值研究[J]. 航空动力学报, 2011, 26(7):1502-1508. ZHANG S L, SHAN Y, ZHANG J Z. Numerical study on aerodynamic and infrared radiation characteristics of single expansion ramp nozzle[J]. Journal of Aerospace Power, 2011, 26(7):1502-1508(in Chinese).
[24] 徐华松, 谷良贤. 高超声速飞行器后体喷管设计[J]. 航空动力学报, 2007, 22(2):257-260. XU H S, GU L X. Nozzle afterbody design of hyper sonic flight vehicle[J]. Journal of Aerospace Power, 2007, 22(2):257-260(in Chinese).
[25] EDWARDS C L W, SMALL W J, WEIDNER J P, et al. Studies of scramjet/airframe integration techniques for hyper-sonic aircraft:AIAA-1975-0058[R]. Reston:AIAA, 1975.
[26] SCHNEIDER A, KOSCHEL W W. Detailed analysis of a mixed compression hypersonic intake[R]. Florence:Fourteenth international symposium on air breathing engines, 1999.
[27] SJOLANDER S A, CAO D. Measurements of the flow in an idealized turbine tip gap[J]. Journal of Turbomachinery, 1995, 117(4):578-584.
/
〈 | 〉 |