Solid Mechanics and Vehicle Conceptual Design

Multiscale heat transfer analysis of Z-directional carbon fiber reinforced braided composites

  • SHI Youan ,
  • HE Lixin ,
  • QIU Bo ,
  • ZENG Lei ,
  • GENG Xiangren ,
  • WEI Dong
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2015-04-09

  Revised date: 2015-08-11

  Online published: 2015-09-30

Supported by

National Natural Science Foundation of China (11402285,91216204)

Abstract

In order to study multiscale heat transfer characteristics of the Z-directional carbon fiber reinforced braided composites, a procedure for predicting equivalent thermal property parameter through a combined approach of the generalized method of cells and multiscale heat transfer analysis is presented. With multiscale structure investigation by scanning electron microscopy, the generalized method of cells is adopted to establish micro-structure model of yarn and meso-structure model of composites for heat analysis. In the sequel, a three-dimensional numerical calculation method for heat-transfer in complex structure is developed using hybrid grid. Based on this, the laws of thermal property influenced by material parameters (i.e., fiber volume fraction in yarn, as well as the size of Z-puncture fiber) are studied by numerical simulations of heat transfer at different length-scale with consideration of isotropy and anisotropy property of component materials. Meanwhile, with adoption of multi-layers cells model, the global equivalent thermal property parameters, such as equivalent conductivity coefficient, equivalent density as well as equivalent specific heat, are predicted for the period of structure in composites considered fully. Finally, validation experiment is made. It is verified that the equivalent thermal parameter predicted by this method agrees well with the experimental values. The results demonstrate that the method presented in this work is a promising means for investigating micro-structure/meso-structure heat transfer characteristic of composites.

Cite this article

SHI Youan , HE Lixin , QIU Bo , ZENG Lei , GENG Xiangren , WEI Dong . Multiscale heat transfer analysis of Z-directional carbon fiber reinforced braided composites[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(4) : 1207 -1217 . DOI: 10.7527/S1000-6893.2015.0233

References

[1] 朱建勋. 细编穿刺织物结构特点及性能[J]. 宇航材料工艺, 1998, 28(1):41-43. ZHU J X. The structural characteristics and properties of fine weave pierced fabric[J]. Aerospace Material & Technology, 1998, 28(1):41-43(in Chinese).
[2] HIROSHI H, KEISUKE T, YASUO K. Compressive strength of three-dimensionally reinforced carbon/carbon composite[J]. Carbon, 2005, 43(7):351-358.
[3] 王宝来, 梁军, 刘洋. 三维编织细编穿刺炭/炭复合材料拉伸与压缩性能及试件尺寸效应研究[J]. 固体火箭技术, 2008, 31(2):184-187. WANG B L, LIANG J, LIU Y. Study on tensile and compressive properties and size effect of 3D fine woven punctured C/C composites[J]. Journal of Solid Rocket Technology, 2008, 31(2):184-187(in Chinese).
[4] SIVA S R, RYAN V, AMIT S, et al. A multiscale crack path predicting computational method for laminated fiber reinforced composites:AIAA-2008-2002[R]. Reston:AIAA, 2008.
[5] 孔宪仁, 黄玉东, 范洪涛, 等. 细编穿刺C/C复合材料不同层次界面剪切强度的测试分析[J]. 复合材料学报, 2001, 18(2):57-60. KONG X R, HUANG Y D, FAN H T, et al. Test and analysis of interfacial shearing strengths of different levels for fine wave & pierced carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2001, 18(2):57-60(in Chinese).
[6] ISLAM D R, PRAMILA A. Thermal conductivity of fiber reinforced composites by the FEM[J]. Journal of Composite Materials, 1999, 33(18):699-715.
[7] 益小苏, 杜善义, 张立同, 等. 复合材料手册[M]. 北京:化学工业出版社, 2009:653-654. YI X S, DU S Y, ZHANG L T, et al. Composite material handbook[M]. Beijing:Chemistry Industry Press, 2009:653-654(in Chinese).
[8] 李东风, 王浩静, 贺福, 等. T300和T700炭纤维的结构与性能[J]. 新型炭材料, 2007, 22(1):59-64. LI D F, WANG H J, HE F, et al. Structure and properties of T300 and T700 carbon fibers[J]. New Carbon Materials, 2007, 22(1):59-64(in Chinese).
[9] 朱建勋, 何建敏, 王海燕. 正交叠层机织布整体穿刺工艺的纤维弯曲伸长机理[J]. 中国工程科学, 2003, 5(5):59-63. ZHU J X, HE J M, WANG H Y. The mechanism of fiber bending and elongation in the integrated piercing process of orthogonal laminated woven fabrics[J]. Engineering Science, 2003, 5(5):59-63(in Chinese).
[10] 杨坚, 张海峰, 王宇, 等. T300、M40J碳纤维制备C/C-SiC复合材料工艺及性能研究[J]. 航空制造技术, 2013, 23(2):97-103. YANG J, ZHANG H F, WANG Y, et al. Study on preparation process and performance of T300 and M40J carbon fiber reinforced C/C-SiC composites[J]. Aeronautical Manufacturing Technology, 2013, 23(2):97-103(in Chinese).
[11] Li S G. General unit cells for micromechanical analyses of unidirectional composites[J]. Composites Part A:Applied Science and Manufacturing, 2000, 32(11):815-826.
[12] LOPEZPEUENTE J, LI S. Analysis of strain rate sensitivity of carbon/epoxy woven composites[J]. International Journal of Impact Engineering, 2012, 48(5):54-64.
[13] GU B. A microstructure model for finite element simulation of 3-D 4-step rectangular braided composite under ballistic penetration[J]. Philosophical Magazine, 2007, 87(30):4643-4669.
[14] 贺立新, 张来平, 张涵信. 间断Galerkin有限元和有限体积混合计算方法研究[J]. 力学学报, 2007, 39(1):15-22. HE L X, ZHANG L P, ZHANG H X. A finit element/finite volume mixed solver on hybrid grids[J]. Chinese Joumal of Theoretical and Applied Mechanics, 2007, 39(1):15-22(in Chinese).
[15] 张来平, 贺立新, 刘伟, 等. 基于非结构/混合网格的高阶精度格式研究进展[J]. 力学进展, 2013, 43(2):202-236. ZHANG L P, HE L X. LIU W, et al. Reviews of high-order methods on unstructured and hybrid grid[J]. Advances in Mechanics, 2013, 43(2):202-236(in Chinese).
[16] 程伟, 赵寿根, 刘振国, 等. 三维四向编织复合材料等效热特性数值分析和试验研究[J]. 航空学报, 2002, 23(2):101-105. CHENG W, ZHAO S G, LIU Z G, et al. Thermal property of 3-D braided fiber composites:Experimental and numerical results[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2):101-105(in Chinese).
[17] 李典森, 卢子兴, 刘振国, 等. 三维五向编织复合材料导热性能的有限元分析[J]. 航空动力学报, 2008, 23(8):1455-1460. LI D S, LU Z X, LIU Z G, et al. Finite element analysis of thermal conductivity of three dimensional and five directional braided composites[J]. Journal of Aerospace Power, 2008, 23(8):1455-1460(in Chinese).
[18] SNAGWOOK S, ROY A K. Enhancement of through-thickness thermal conductivity of nanotube-reinforced composites:AIAA-2008-1771[R]. Reston:AIAA, 2008.
[19] LIU Z G, ZHANG H G, LU Z X. Investigation on the thermal conductivity of 3-dimensional and 4-directional braided composites[J]. Chinese Journal of Aeronautics, 2007, 20(4):327-331.
[20] LI H Z, LI S G, WANG Y C. Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales[J]. Materials Research Society, 2011, 26(3):384-394.

Outlines

/