Fluid Mechanics and Flight Mechanics

Flow direction effect on heat transfer of supercritical CO2 in helically coiled tube

  • LI Hongrui ,
  • XU Xiaoxiao ,
  • LIU Chao ,
  • LIU Xinxin
Expand
  • Key Laboratory of Low-grade Energy Utilization Technologies and Systems, College of Power Engineering, Chongqing University, Chongqing 400030, China

Received date: 2015-06-19

  Revised date: 2015-09-02

  Online published: 2015-09-16

Supported by

National Natural Science Foundation of China (51206197); the Fundamental Research Funds for the Central Universities (CDJZR12140032); Project supportod by Graduate Scientific Research and Innoration of Chongqing (CYS16011)

Abstract

Numerical analysis on heat transfer of supercritical CO2 in heated vertical helically coiled tubes is performed by renormalization group (RNG) k-ε turbulent model. The tube diameter, effective heated length, tube pitch, curvature diameter are 9 mm, 5.5 m, 32 mm and 283 mm, respectively. The influences of the mass flux, inlet pressure, heat flux and flow direction on heat transfer and pressure drop of supercritical CO2 are studied. Furthermore, the combined effects of variable physical properties, buoyancy and centrifugal force in different flow directions of helically coiled tubes on heat transfer are analyzed. It is found that the influence of the buoyancy on the supercritical fluid flow up and down in helically coiled tubes is not significant, while the influence of the buoyancy in the horizontal direction is great, especially when the ratio of the distance which a cross-section of helically coiled tube to the entrance section and the pipe diameteris between 150 and 350 (near the critical temperature). The variable physical properties, the coupling effect of buoyancy and centrifugal force cause the fluctuation of the horizontal heat transfer coefficient.

Cite this article

LI Hongrui , XU Xiaoxiao , LIU Chao , LIU Xinxin . Flow direction effect on heat transfer of supercritical CO2 in helically coiled tube[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(7) : 2123 -2131 . DOI: 10.7527/S1000-6893.2015.0245

References

[1] 何慧珊. 优化方法在空调系统设计中的应用[J]. 航空学报, 1987, 8(10):488-495. HE H S. Application of the optimal method on air-conditioning system design[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(10):488-495(in Chinese).
[2] MA Y, LIU Z, TIAN H. A review of transcritical carbon dioxide heat pump and refrigeration cycles[J]. Energy,2013, 55:156-172.
[3] JIANG P X, ZHAO C R, SHI R F, et al. Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(21-22):4748-4756.
[4] 李蒙, 陈曦, 张华. 二氧化碳热泵热水器微通道气体冷却器的仿真分析[J]. 化工学报, 2008, 59(52):143-147. LI M, CHEN X, ZHANG H. Numerical simulation of micro-channel gas cooler for CO2 heat pump heater[J]. CIESC Journal, 2008, 59(52):143-147(in Chinese).
[5] 饶政华, 廖胜明. 二氧化碳微通道气体冷却器的数值仿真与性能优化[J]. 化工学报, 2005, 56(9):1721-1726. RAO Z H, LIAO S M. Numerical simulation and performance optimization of carbon dioxide micro-channel gas cooler[J]. CIESC Journal, 2005, 56(9):1721-1726(in Chinese).
[6] LI D Q. Investigation of an ejector-expansion device in a transcritical carbon dioxide cycle for military ECU applications[D]. West Lafayette:Purdue University, 2006.
[7] 彦启森, 石文星, 田长青. 空气调节用制冷技术[M]. 北京:中国建筑工业出版社, 2010:36-39. YAN Q S, SHI W X, TIAN C Q. Air conditioning refrigeration technology[M]. Beijing:China Architecture and Building Press, 2010:36-39(in Chinese).
[8] LORENTZEN G. Revival of carbon dioxide as a refrigerant(Ⅰ)[J]. H &V Engineer, 1993, 66(721):9-14.
[9] LORENTZEN G. Revival of carbon dioxide as a refrigerant(Ⅱ)[J]. H &V Engineer, 1993, 66(722):10-12.
[10] JIANG P X, XU Y J, LV J. Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini tubes and in porous media[J]. Applied Thermal Engineering, 2004, 24(8-9):1255-1270.
[11] HE S, JIANG P X, XU Y J, et al. A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical minitube[J]. International Journal of Thermal Sciences, 2005, 44:521-530.
[12] LIAO S M, ZHAO T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25):5025-5034.
[13] XU F, GUO L J. Mixed convective flow and heat transfer of water in a helicoidal pipe under supercritical pressure[J]. Journal of Xi'an Jiaotong Univercity, 2005, 39(9):978-981.
[14] LIBERTO D M, CIOFALO M. A study of turbulent heat transfer in curved pipes by numerical simulation[J]. International Journal of Heat and Mass Transfer, 2013, 59:112-125
[15] WANG K Z, XU X X, WU Y Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99:112-120.
[16] XU J L, YANG C Y, ZHANG W, et al. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 80:748-758.
[17] 王淑香, 张伟, 牛志愿, 等. 超临界压力下CO2在螺旋管内的混合对流换热[J]. 化工学报, 2013, 64(11):3917-3926. WANG S X, ZHANG W, NIU Z Y, et al. Mixed convective heat transfer to supercritical carbon dioxide in helically coiled tube[J]. CIESC Journal, 2013, 64(11):3917-3926(in Chinese).
[18] 王福军. 计算流动力学分析--CFD软件原理与应用[M].北京:清华大学出版社, 2004:124-125. WANG F J. Computational flow dynamics analysis-Principle and application of CFD software[M]. Beijing:Tsinghua University Press, 2004:124-125(in Chinese).
[19] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence:I. Basic theory[J]. SIAM Journal on Scientific Computing, 1986, 1(1):1-51.
[20] Fluent Inc. Fluent user's guide, Cecil Township, Pennsylvania[Z].[S.L.]:Ansys, Inc., 2006.
[21] NIST Standard Reference Database 23. NIST thermodynamic and transportproperties of refrigerants and refrigerant mixtures REFPROP. Version 8.0[S]. Maryland, USA:Gaithersburg, 2007.
[22] ZHANG W, WANG S X, LI C, et al. Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube[J]. Applied Thermal Engineering,2015, 88:61-70.

Outlines

/